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ABSTRACT: The land surface and atmosphere interaction forms an integral part of the climate system. However, this intri-
cate relationship involves many complicated interactions and feedback effects between multiple variables. As a result, relying
solely on traditional linear regression analysis and correlation analysis to distinguish between multivariate complex “driver—
response” relations can be challenging, since they do not have the needed asymmetry to establish causality. The Liang—Kleeman
(LK) information flow theory provides a strict nonparametric causality measurement for identifying the causality between any
given time series, and its recent extension from bivariate to multivariate form provides a powerful tool for causal inference in
complex multivariate systems. However, the multivariate LK information flow also assumes stationarity in time and requires a
sufficiently long time series to ensure statistical sufficiency. To remedy this challenge, we rely on the square-root Kalman filter
to estimate the time-varying form of the multivariate LK information flow causality. The results from theoretical and real-world
applications show that the new algorithm provides a valuable tool for characterizing time-varying causal relationships in land-
atmosphere interactions, even when the time series are short and highly correlated.

SIGNIFICANCE STATEMENT: Causality in land-atmosphere interactions is generally characterized by seasonal
and intraseasonal changes that are usually not captured with commonly used approaches, because most approaches as-
sume the time series are stationary. In this study, we extend the recently proposed multivariate Liang—Kleeman infor-
mation flow causality (MtvLK) to handle nonstationary systems such as those in land-atmosphere interactions. By
considering nonstationarity, we aim to unravel time-varying causal structures that are usually masked out in commonly
used methods. Validating the MtvLK with synthetic models showed that the MtvLK is able to obtain the expected
causal structures. Furthermore, real-world applications reveal novel findings of the time-varying causal structures be-
tween soil moisture, vapor pressure deficit, and the gross primary product.

KEYWORDS: Atmosphere-land interaction; Soil moisture; Kalman filters

1. Introduction

Land-atmosphere interactions play a critical role in the
climate system, not only as a key component but also as an es-
sential driver of terrestrial surface water and energy balance
(Orth and Seneviratne 2017; Seneviratne et al. 2006, 2010).
These interactions are characterized by complex couplings
and feedbacks between land and atmospheric states and
complex systems that include various natural processes
(Schwingshackl et al. 2017). Furthermore, these complex nat-
ural processes and interactions play an important role in the
exchange of energy and water, which sometimes results in
amplifying temperature and humidity anomalies (Humphrey
et al. 2021; Zhou et al. 2019), exacerbating soil desiccation
and atmospheric aridity (Zhou et al. 2019), leading to heat
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waves and droughts (Berg et al. 2016; Ciabatta et al. 2015).
They also affect regional convection and precipitation (Tuttle
and Salvucci 2016), leading to flooding in anomalously wet
times (Saini et al. 2016). Therefore, a good understanding of
the complex processes involved in land—atmosphere interac-
tions is vital in improving the prediction of related extreme
events (Lemordant et al. 2016). Although land-atmosphere
interactions often involve multiple interacting variables, most
of the commonly used analysis methods can assess only two
variables at a time, making it difficult to account for the im-
pact of confounding variables. In addition, various complex
natural processes in land-atmosphere interactions usually
vary not only in space (Lintner and Neelin 2009), but also at
different time scales ranging from days to months or even
years (Baker et al. 2021; Duerinck et al. 2016). It is, therefore,
necessary to look beyond bivariate and time-invariable
analyses to better understand these complex spatiotemporal
characteristics.
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The approaches for quantifying land-atmosphere interactions
include physical and numerical simulation experiments that inter-
vene in the interactions of interest under well-controlled condi-
tions and using data science methods for causal inference. In
recent years, several data-driven methods have been applied to
time series datasets to estimate potential causal dependencies.
Traditionally, commonly used approaches are based on correla-
tion and regression analysis. For example, Duerinck et al. (2016)
conducted a correlation-based study on the relationship between
soil moisture and precipitation in Illinois at different time and
spatial scales. Their results showed a strong positive correlation
between the state average soil moisture in late spring/early sum-
mer and the subsequent state average summer precipitation,
while no relationship was found at the daily and weekly scales.
Pal et al. (2020) presented the relationship between soil moisture
and boundary layer depths (BLDs) after flooding at two weather
scales based on regression analysis, effectively improving the pre-
diction of extreme events. Although correlation and regression
analysis may help provide causal inferences, they lack the neces-
sary asymmetry to provide causal directions in the interactions
between the variables under consideration (Fu et al. 2022;
Novick et al. 2016; Wu et al. 2015; Zhang et al. 2021). As a result,
it is difficult to extrapolate the “drive-response” relationship.

The concept of causal inference originated in the early twenti-
eth century (Wright 1921) and since then several studies have at-
tempted to quantify it. Granger (1969) used a statistical prediction
formalism to quantify causal relations. The Granger causality
(GC) assumes that for two time series X and Y, X Granger-causes
Y if the conditional variance of Y decreases when the knowledge
of the past X is provided (Granger 1969). GC has become one of
the most used tools for causal discoveries between time series and
has consistently been modified to expand its applications in several
fields, including climate science. For instance, Detto et al. (2012)
proposed a conditional GC analysis framework, which can elimi-
nate the influence of external forcing and separate the inherent
periodic coupling signals of regional eco-climate systems. Green
et al. (2017) used this approach to study vegetation—atmosphere
feedback mechanism and found that the local feedback mecha-
nism could explain about 30% of surface net radiation and precip-
itation variance. Papagiannopoulou et al. (2017a,b) developed and
applied a nonlinear multivariate Granger causality approach to
study the relationship between global vegetation and climate fac-
tors and found that water was the main controlling factor of
vegetation anomalies, while radiation and temperature had little
influence.

Beyond the GC methods, information theory (IT) has been
demonstrated to be a rigorous alternative for identifying and
quantifying causality (Goodwell et al. 2020). Since IT measures
are based on probability distribution functions (pdfs), they can
capture linear and nonlinear relationships between variables. In
addition, IT-based methods can be reliably extended to quantify
causal relationships between more than two variables (Goodwell
et al. 2020). IT-based methods thus provide a framework within
which causality can be considered in Earth system science, provid-
ing a more powerful tool for studying complex causal relationships
in land-atmosphere interactions. In recent times, Liang (2014)
proposed a new causality analysis method based on information
flow theory, namely the Liang-Kleeman (LK) information flow
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(Liang 2016), which is a strict nonparametric causality measure-
ment form for identifying the causality between any given time
series. Compared with the GC, LK causality is easier to compute,
since it only involves the sample covariance of time series. More-
over, since it originates from first principles and strict mathemati-
cal derivation, it avoids the false causalities sometimes found in
GC test and other statistical forms (Hagan et al. 2019).

Since its development, the LK causality has been successfully
applied to causality studies in climate systems. For instance, Liang
(2014) used the method to extrapolate the causality between El
Nifio and the Indian Ocean dipole (IOD). Stips et al. (2016) used
this method to study the causality between greenhouse gas emis-
sions and global warming. Bai et al. (2018) also used it to analyze
the causes of tropical cyclones in the western North Pacific. More
recently, Tao et al. (2021) used the LK causality to quantitatively
assess the impacts of climate warming, interdecadal oscillations in
the Atlantic and Pacific on global precipitation and their regional
differences. However, the original form of the LK assumes statio-
narity, therefore, it does not account for the time-dependent
changes in land-atmosphere interactions. To deal with this prob-
lem, Hagan et al. (2019) extended the Liang causality to a time-
frequency form by combining the Kalman filter and wavelet anal-
ysis and applied it to the interaction between soil moisture and air
temperature over China, providing a new tool for studying tem-
poral causal structures in land—-atmosphere interactions. However,
the approach presented by Hagan et al. (2019) is restricted to cau-
sality between only two variables and does not consider the ef-
fects of potential confounding variables. Therefore, seeking a
causality analysis method that can address nonstationarity in the
multivariate causality analysis is of paramount importance for the
study of land-atmospheric interactions.

Recently, Liang (2021) extended the LK causality to multivari-
ate time series causality and causal graph reconstruction, al-
though the time series are also assumed to be stationary. Liang
et al. (2021) successfully used this method to obtain accurate
forecasts of El Nifio Modoki 10 years in advance. Docquier et al.
(2022) used this method to analyze the effects of several potential
climate drivers on Arctic sea ice area and volume, and the re-
verse effects of sea ice area and volume on these drivers. Hagan
et al. (2022) successfully applied it to analyze confounding im-
pacts of soil moisture and vegetation on the causal structure of
CO, emissions and near-surface mean air temperature couplings
for multiple future scenarios of the climate system. Moreover,
this theory and methodology, albeit originally born from
atmosphere—ocean—climate science, has been widely applied in
other disciplines such as quantum mechanics (Yi and Bose 2022)
and neuroscience (Cong et al. 2023). These studies demonstrate
the usefulness of the multivariate LK causality in practical appli-
cations. Therefore, this study combines the multivariate LK cau-
sality with the Kalman filter to provide a new statistical tool for
estimating the time-varying causalities in multivariate land-
atmosphere interactions. The rest of the paper is structured as
follows: section 2 describes the formalism, section 3 validates the
formalism with synthetic models, and section 4 applies it to a
real-world case study of vegetation—climate interactions in China.
Section 5 presents a summary and discussion of the proposed
method and its potential applications.
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2. The multivariate time-varying causal inference

a. Estimation of information flow and causality in
multivariate time series

Liang (2016) observed that causality is a real physical no-
tion, which can be deduced and quantified by the concept of
Liang-Kleeman information flow (LKIF). Liang (2021) real-
ized the causality analysis of multivariate information flow
based on a rigorous derivation and explicit formulas for multi-
dimensional information flow has been obtained in a closed
form with both deterministic and stochastic systems. The fol-
lowing briefly introduces the derivation process of multivari-
ate information flow method.

Consider a d-dimensional continuous-time stochastic sys-
tem for X = (X1, ..., X4)

dX = F(X, 0dt + B(X, 1)dW 1)

where F may be arbitrary nonlinear functions of X and 7, W is
a vector of standard Wiener processes, and B is the matrix of
perturbation amplitudes. The rate of information flowing
from Xj to X; (in nats per unit time) proves to be

a(F;py) P(g;qp\)
1 i \ 1 |1 i \
T. .=—E|— d + - E|— d
J=t p; JRH ax; XW 2 p; JlRH 8xi2 X\\i
a(Fl-P&) 1 az(g[,'p&)
= _Jdejli(xﬂxi)Tcidx + EJRde\i(xﬂxi)vdxv
)
where dx\ \ signifies dxy, ..., dx;—1dx;i1, .,.,dlxj,ldxjﬂ, .
dx4, E is the mathematical expectation, g,; = zkzl\bikbik’ pi =

pi(x;) is the marginal probability density function (pdf) of
X, pji is the pdf of X; conditioned on X;, and p\. = [ p(x)dxj.

In Eq. (1), in the case of linear systems where F(X, r) = AX,
A = (a;), Eq. (2) becomes quite simple (Liang 2016):

T % 3
. ,—a..o_—7 3)

where g;; is the (i, j)th entry of A, and oy; is the population co-
variance between X; and X.

Since Eq. (3) is challenging to use in practical applications,
we need to obtain a practically applicable formula by estimat-
ing Eq. (3). Suppose that the d time series are all equally
spaced (x;, i = 1, ..., d) and all having N data points [x;(n),
n=12, .., N],with F(X, 1) = AX, A = (a;) beingad X d
matrix, and

b, 0 0
B=]o 0
0 0 b,

being a d X d diagonal matrix. We take an example of esti-
mating information flow from x, to x; in a d-dimensional sys-
tem (T>_1345..q4). First, we need to estimate a; before
estimating 7,_,,; Liang (2014) indicated that when a; and b;
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are constant, the maximal likelihood estimator (mle) is the
least squares solution of the following N algebraic equations:

d
,;“1/"/'(”) =i(n), n=1,.,N )

where X in = (Xippx — X;,)/(kA?) is the Euler forward
differencing approximation of dX,/dt, [where k is an integer
and k = 1; k = 1 should be set in most of the time to ensure
accuracy, except in some cases of deterministic chaos when
the sampling at the highest resolution needs to be chosen

(k = 2); At is the time step size]. Following the procedure in

Liang (2014) the least squares solution of (aiy, ..., a14),
(@, ..., a,,), satisfies the algebraic equation
Ciy Collay Cian
=1 ) ®)
Cor - Cllay, Coan

N
where ¢, = 1/N2n:1[xi(n) - Tcl.][x].(n) - fj] and ¢, =
l/Nanzl[xi(n) - X,.][)'cj(n) - §j] are the sample covariances.

Here, 4, = (1/detC) XA, C, .

tors. Based on Eq. (3), the information flow from X, to X;

where A;; are the cofac-

when considering the influence of X3, X4, X5, ..., Xz on
the d-dimensional system is
1< Cp
Ty ipas...a = deth{ AZjC/',dl C_117 (6)

where detC is the determinant of the covariance matrix C, and
C; a1 is the sample covariance between x; and the derived series
X,. In this case, when d = 2, Eq. (6) can be easily reduced to

T = ClunCa ~ C%ch,dl
. CQHCZZ - Cuc%z 7

™)

which is obtained in Liang (2014) and frequently used in
applications, such as Stips et al. (2016), Bai et al. (2018) and
Tao et al. (2021).

b. Kalman filter

The Kalman filter is a time domain filtering algorithm,
which takes the minimum mean square error as the best esti-
mation criterion (Kalman 1960). As a learning algorithm, the
equations for the Kalman filter fall into two groups: time up-
date equations and measurement update equations. The time
update equations are responsible for obtaining the a priori es-
timates for the next step by projecting the current state and
error covariance forward. The measurement update equations
are responsible for obtaining an improved a posteriori esti-
mate modified by combining the latest observation informa-
tion and the prediction information of the current moment
(Kalman 1960). So the time update equations can be thought
of as predictor equations and the measurement update equa-
tions can be considered corrector equations (Kalman 1960).

Unauthenticated | Downloaded 11/19/25 12:25 PM UTC



1856

Because the Kalman filter can identify immediate changes,
this would become advantageous when tracking time-varying
causality within a system (Havlicek et al. 2010; Punales 2011).
Therefore, we use the Kalman filter to estimate the time-varying
information flow based on Eq. (6) to estimate the multivariate
time-varying causality formalism based on the Liang—Kleeman
information flow. The standard Kalman filter is formulated with
a linear stochastic system:

x, = Ax,_, + Bu, +w,_,, (8
y, = Hx, +v,, )

where x and y are the system state and measurement vectors,
and u is the input vector. The parameter A is the system states
transition matrix, B is the input matrix, and H is the measure-
ment matrix. Also, w and v are zero mean process and mea-
surement noise, respectively, assumed to be independent of
each other, with normal probability distributions, and meets
the criteria of the following equations:

Qi=k
E[w,] =0, E[wkwl-T] = { 0.i%k
R, i=k
Elv,]=0, E[vwI]=¢"
el vevi] { 0,i+#k
E[w,v[]=0, (10)

where E represents the expectation, Q is the covariance ma-
trix of the process noise wy, and R is the covariance matrix of
the measurement noise vy.

When the system satisfies Egs. (8) and (9), the estimation
of each time can be obtained by the Kalman filter recursive
formula. The specific procedures are as follows:

1) According to the state estimates at time step k — 1, project
the state at time step k by the following equation:

X, =A%, ; + By, (11)

where X, are the state estimates at time step k and X k-1
are the state estimates at time step £ — 1.

2) Define a priori estimate errors as e, =x, — X, , and the a pri-
ori estimate error covariance is P, = E[e -e; T], so we can
project the error covariance at time step k by the equation:

P, =AP,_ A" +Q,, (12)

where P, are the error covariance estimates at time step k
and P, are the error covariance estimates at time step k — 1.
3) Update the Kalman gain at time step k:

K, =P H'(HP,H" + R)". (13)
4) The below equations are used to update the state esti-

mates with measurement y, and the Kalman gain K at
time step k:

%, = %, +K,(y, — H&p). (14)

JOURNAL OF CLIMATE

VOLUME 37

5) Define a posteriori estimate errors as e, = x, — X, , and the
a posteriori estimate error covariance is P, = E[e, - eZ], SO
the equation of update error covariance at time step k is

P,=(0—-KH)P,. (15)

Since the calculation of causality by the LKIF is mainly based
on the covariance between samples, it is vital to accurately esti-
mate the covariance between the samples. The multivariate
time-varying causality formalism based on the LKIF is realized
by computing the sample covariance with the resulting covari-
ance of each time step estimated by Kalman filter. However, it is
usually difficult to calculate the process noise covariance Q and
the measurement noise covariance R (Berg et al. 2014); most
current studies assume them as constants. However, Q and R
may change at each time step in practice, thus, we do not assume
they are constants here. Our approach is to first use the expo-
nential weighted moving average (EWMA) and unweighted
moving average (UWMA) to estimate Q and R offline, and then
apply the obtained results to the iteration process of Kalman fil-
ter, as shown in Eqgs. (12) and (13).

In addition, according to Egs. (11)—(15), it can be seen that
the standard Kalman filter essentially uses the Kalman gain K
to weighted average estimates and measurements of y, to im-
prove the accuracy of the measurement, which determines the
weighted component of the measurement when estimating the
state estimates. Therefore, an accurate calculation of K is fun-
damental to improve the accuracy of the calculation. However,
correction of the accumulated computational round-off errors
from the state variance-covariance computation was done. This
is because no feedback existed in the gain loop, creating numer-
ical imprecision within the Kalman filtering process. To remedy
this study, we employed the Bierman-Thornton algorithm
(Bierman and Thornton 1977), which uses modified Cholesky
factors of the state variance—covariance matrix. The detailed de-
scription of this algorithm can be found in Hagan et al. (2019).
This study uses the square root Kalman filter based on the
Bierman-Thornton algorithm to realize the multivariate time-
varying LKIF causality formalism.

¢. The multivariate time-varying causality formalism
based on the Liang—Kleeman information flow

The algorithm begins with the computation of the process
and measurement of noise covariances Q and R respectively.
From there, the filter starts by calculating the Kalman gain K
through the updated covariance matrix P at each time step.
This step is used to compute the causality. The Bierman and
Thornton algorithms are used at the measurement and tem-
poral updates to make the calculation more stable. In this
way, Eq. (6) can be rewritten as

1

T, = SA,P 12 (16)
2-1345...d = JetP 2 jd1 PH

where P is the resulting covariance matrix at each time step of
the iteration, A, are the cofactors of the matrix P = (P;), and
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Compute the process and measurement
of noise Q & R for each time step
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Covariance P is decomposed based on
Bierman-Thornton algorithm

|

)

[ Initialize estimates X, , P, ]
K Time update equations
(1)According to the state estimates at time step k-1,
project the state at time step k:

X, = AX, , +Bu,

(2)According to the error covariance estimates at time
step k-1, project the error covariance at time step 4:

P, =AP_ A" +Q,

Measurement update equations

(1) Update the Kalman gain at time step k:
R B -1
K, =P H' (HP,H' +R)
(2) Update the state estimates at time step k:
X, =%, +K,(y, —HX})
(3) Update error covariance at time step :

P, =(1-KH)P;

|

Use the square root Kalman filter to estimate
the time-varying information flow based on:

1

T,

2-13,4,5,....d

" detC

d

ZAszm ’

J=1

Co
Cll

l

The multi-variate time-varying causality formalism
based on the Liang-Kleeman information flow:

T, . - . p i
291B4S,d = qop G2 A

1

=1

i}

11

FIG. 1. The framework of MtvLK.

P; 4 are the resulting covariance between X; and the derived
series X i

Since the EMWA and UWMA require choice of a look-
back window length to compute the moving average before
estimating Q and R offline, an information length of the win-
dow length is lost to do the forward update of the filter. We
propose an effective solution to the problem; the details are
given in appendix B. The formalism is henceforth referred to
as MtvLK (multivariate time-varying Liang—Kleeman infor-
mation flow) and will be used throughout the rest of this pa-
per; the framework of MtvLK is shown in Fig. 1. In addition,
it is particularly important to note that when there are only
two variables in the system, MtvLK will be the same as the
framework proposed by Hagan et al. (2019).

3. Simulation studies

To verify the reliability of MtvLK, we set up three idealized
experiments with known causalities to examine how well the
information flow of the MtvLK captures the preset causal
structures. The LKIF in this study is measured in nats per unit
time.

a. Synthetic model 1

In land-atmosphere interactions, causal relationships between
variables often vary over time instead of remaining constant, as
exemplified by the impact of soil moisture on temperature in the
Chinese region (Hagan et al. 2019). The findings of Hagan et al.
(2019) indicate that in humid areas of China, the influence of soil
moisture on temperature is mostly nonsignificant throughout the
year, except for a significant statistical signal during the spring
season. Moreover, the information flow between soil mois-
ture and temperature in spring exhibits a trend of initial in-
crease followed by a subsequent decrease. Drawing upon the
varying causal relationships observed in this case, we have
designed the following synthetic model that incorporates
multiple variables:

x,(0) = 035x,(t — 1) + ¢, ,(Ox,(t — 1) + &,(?)
X, () = 0.35x,(t — 1) + ¢;_,(Ox,(t = 1) + &,(1).
xy(1) = 0.35x5(t = 1) + ¢,_5(Ox,(t — 1) + &,(0)

17)

The first synthetic model is a ternary autoregressive process
of X = [x1, x, x3], as described in Eq. (17). The time series
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X1, X2, and x3 have the same length of 2000 time points with
added white noise of zero means and unit variance &(¢), &,(¢),
and &3(¢). Note that ¢,_,; and ¢;_,, represent the influence of
X, on x; and that of x; on x,, while c,_,3 represents the influ-
ence of x, on x3. For 0 < ¢t = 500 and 1500 < ¢ = 2000, all the
causalities are set to be 0. For 500 < ¢ = 1500, all the causali-
ties are gradually increased from 0 to 0.5, with an increment
of 0.001 per time step when 500 < ¢ =< 1000, and all the causal-
ities are gradually decreased from 0.5 to 0, with a decrement
of 0.001 per time step when 1000 < ¢ = 1500. Thus, in this sys-
tem, when 0 < ¢ = 500 and 1500 < ¢ =< 2000, no causality ex-
ists among xi, X, and x3. When 500 < ¢ =< 1500, causalities
exist between x; and x, and from x, to x3. The full causal
structure of Eq. (17) is shown in Figs. 2a and 2b. In Figs. 2¢cj,
the blue lines show the realization averages of the absolute
value of time-varying information flows, while the red lines
are the significant values realizations at a 1% significance
level. We infer causality when the absolute information flow
values are greater than the significant values. All the results
are the average of the absolute values of 1000 realizations at a
1% significance level.

Figures 2c—j are the ensemble means of the time-varying in-
formation flow results (in nats per unit time). We added two
dashed lines in the figure at the causal relationship turning
points of r = 500 and ¢ = 1500 for a more intuitive display.
Additionally, it is worth noting that to more clearly depict the
causal relationships each subplot focuses on, we have added a
small schematic at the top of each one. In these schematics,
the blue variables indicate a variable whose role is being con-
sidered within the system, while the gray variables signify
those whose roles are not currently being considered. Yellow
solid arrows represent predefined causal relationships that
have not been tested yet, whereas red solid arrows denote
those predefined causal relationships currently under testing.
Gray solid arrows pointing toward gray variables indicate
causal relationships that are not being considered in the sys-
tem at present. Meanwhile, red dashed arrows signify causal
relationships that are currently being tested but were not
predefined.

The results in Figs. 2c—j are consistent with the predefined
causalities in Eq. (17), showing that x; influences x, (Figs. 2c,d)
and x, influences both x; (Figs. 2e.f) and x3 (Figs. 2g,h) where
500 < ¢ = 1500. Figures 2c and 2d are the absolute value of the
time-varying information flows from x; to x, (|71 x2|) and x; to
x, influenced by x3 (|Ty1x21x3]), respectively. The results in the
two figures show that x; influences x, for 500 < ¢ = 1500, the
causal intensity exhibits an initial increase followed by a subse-
quent decrease, no causality exists between x; and x, when
0 <t =500 and 1500 < ¢ = 2000, and an insignificant influence
of x3 in the multivariate case (Fig. 2f). It is important to empha-
size that the absolute value of information flow employed in
this study solely serves as a measure of the causal strength be-
tween variables. It does not carry any connotations related to
positivity or negativity, nor does it imply any other meaning
beyond quantifying the strength of the causal relationship. Fur-
thermore, it is crucial to acknowledge that the MtvLK necessi-
tates the selection of a suitable lookback window length for
computing the moving average, which is subsequently used in
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offline estimation of Q and R. The choice of this window length
can be tailored to meet the specific requirements of the experi-
ment. In this synthetic test, we opted for a window length of 300
to facilitate our investigation. Consequently, the depicted re-
sults in Fig. 2 indicate that when causalities change, a relatively
brief time step is required for the transition to occur, with the
maximum value being attained at approximately ¢ = 1200 in-
stead of = 1000. Figures 2e and 2f are the absolute value of
the time-varying information flows from x, to x; (|7, |) and
X, to x; influenced by x3 (|Ty2- x1x3]), respectively. The results in
the two figures also show that x, influences x; for 500 < ¢ =
1500, and an insignificant influence of x3 in the multivariate case
(Fig. 2f). Figures 2g and 2h show the absolute value of the time-
varying information flow from x, to x3 (|Ty_.,3|) and that of x,
to x5 influenced by x; (|Ty2-,3p1l). Again, the results in the two
figures are identical and point to the negligible influence of x; in
the multivariate case (Fig. 2h). Finally, Figs. 2i and 2j are the
absolute value of the time-varying information flow from x; to
X3 (|Tx1-3]) and that of x; to x3 influenced by x5 (|71 x3pl)-
Both results correctly show that there are no causalities for
0 <t =500 and 1500 < r = 2000. However, |7y, also
shows no causalities for 500 < ¢t = 1500 (Fig. 2j) while |Ty_, |
shows significant causalities. These results might suggest that
|T1 3| interprets the continuous information flow from x; to
X, and then x, to x5 as a potential causal link (|7, _,.3|) when
the confounding variable x, is not considered (Fig. 2i). All of
the findings above exhibit a high degree of consistency with the
predetermined causal structure established in this synthetic
model. Moreover, the temporal depiction of causation strength
effectively captures the dynamics of causal relationships over
time.

Additionally, we conducted the same test on all links that
did not preset causality, with the results as shown in Fig. C1
(appendix C). Examining the figure, we can clearly see that
|73 02| and |Tys_, xo01| shows no causalities for 0 < r = 500
and 1500 < ¢ = 2000. In addition, although |T\3_,,1xo| and
|T\3-x211| exhibit a tendency to initially rise and then decline
for 500 < ¢ = 1500, both |73 x1jx2| and | Tyz_xap| still shows
no causalities, which means |T3_,1jx2| and |Ty3_ 41| have no
causalities for 0 < ¢ = 2000, which is aligning well with our ini-
tial expectations.

b. Synthetic model 2

In complex multivariable systems similar to the land-
atmosphere interactions, besides the case of homologous influ-
ences as in synthetic model 1, there are also many cases where
several variables influence one variable simultaneously. There-
fore, we generated the following tertiary autoregressive pro-
cess based on synthetic model 1:

x,(1) =035, (t — 1) + ¢, ;(Ox,(t — 1) + &,(1)

x,(f) = 0.35x,(t — 1) + &,(9)

x3(t) = 0.35x5(t — 1) + ¢;_5(Ox,(t = 1) + ¢, 5(Ox,(t = 1) + &().
(18)

The process of X = [x1, x,, x3], as described in Eq. (18). Here,
for 0 < ¢t = 500 and 1500 < ¢ = 2000, ¢,_1, ¢»_,3 and ¢;_,3 are
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FIG. 2. (a) Schematic diagram of the conceptual model as described in Eq. (17) when 0 < ¢ = 500 and
1500 < ¢ = 2000. (b) As in (a), but for interval 500 < ¢t = 1500. Absolute values of the time-varying informa-
tion flows among x4, x,, and x5 (in nats per unit time): (¢) |71—x2| and Sigyi 125 (d) |Tx1 - x2pal and Sigy . ops;
(€) T2l and Sigez 15 (f) [Tazapsl and Sigea 13 (8) 1Tx2 -3l and Sigua 135 (h) [Tz 31| and Sigeox3pers
(1) |T1-x3] and Sigui 133 () |71 - x3p2] and Sigyi .30 Dashed lines represent the causal relationship turning
points. All the results are the averages of 1000 realizations, and all the significance tests are performed at a
1% significance level.
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set to be 0; for 500 < ¢ = 1500, all the causalities are gradually
increased from 0 to 0.5, with an increment of 0.001 per time
step when 500 < ¢ = 1000, and all the causalities are gradually
decreased from 0.5 to 0, with an decrement of 0.001 per
time step when 1000 < ¢ = 1500. Thus, in this system, when
0 <t =500 and 1500 < ¢t = 2000, there are no direct causali-
ties among the xy, x,, and x3; and when 500 < ¢ = 1500, x5 is
directly influenced not only by x, but also by x;. The causality
among the time series x;, xp, and x5 is shown in Figs. 3a
and 3b. Similar to synthetic model 1, the window length of
300 was also chosen in this synthetic model to facilitate our in-
vestigation. Figures 3c-h are the ensemble means of the abso-
lute value of the time-varying information flows among the x,
X2, and x3 (in nats per unit time). All the results are obtained
at a 1% significance level. Figures 3c and 3d shows the abso-
lute value of the time-varying information flow from x, to x;
(ITx2-x1|) and that from x, to x; influenced by x3 (|72 x1px3l)-
Both approaches show that x3 does not affect the causality
from x, to x; since there is no preset feedback from x; to x;
or x,. Figures 3e and 3f show the absolute value of the time-
varying information flow from x, to x3 (|Ty2_.3|) and that
from x, to x3 influenced by x; (| Tw2-x3p1]), for 500 < ¢ = 1500,
where we find that [Ty, )01 is lower than [T, 3], due to the
feedback from x; (Barrett and Barnett 2013). Finally, Figs. 3g
and 3h show the absolute value of the time-varying informa-

x,(5) = 0.35x,(t — 1) + &,(1)

The process of X = [x1, X2, X3, X4, Xs], as described in Eq. (19).
For 0 <t = 500, ¢,_,1, ¢33, and ¢;_,3 are set to be 0; for
500 < ¢ = 1500, all the causalities are gradually increased
from 0 to 0.5, with an increment of 0.0005 per time step; for
1500 < ¢t = 2000, ¢p_,1, ¢2_,3, and ¢, _,3 are set to be 0.5. Thus,
in this system, when 0 < ¢ = 500, there are no direct causali-
ties among the time series xy, X, X3, X4, and x5 as shown in
Fig. 4a; when 500 < ¢ = 2000, causalities exist from x; to x,, x»
to Xs, X tO X3, X5 tO X4, X3 tO X4, and x4 to xs, where x4 is directly
influenced not only by x, but also by x3, as shown in Fig. 4b, all
the causalities among the variables exhibit an initial gradual
increase, followed by a period of stability where they remain
unchanged. Figures 4c-h are the ensemble means of the abso-
lute value of the time-varying information flows among the x;,
X2, X3, X4, and x5 (in nats per unit time). All the results are ob-
tained at a 1% significance level. For this synthetic model, we
have selected a lookback window length of 200 for the experi-
mental. Figures 4c-h show the absolute value of the time-
varying information flow from x; to x, influenced by x3, x4, and
X5 (|Tvix2haxaxs|), from x; to xs influenced by x,, x3, and x4
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tion flow from x; to x5 (|71 ,3|) and that from x; to x3 influ-
enced by x5 (|74 -x3)x2]). Both cases reproduce the expected
causalities as preset in Eq. (18). These results demonstrate
the reliability of the MtvLK to unravel time-varying causali-
ties even in complex systems.

Similar to synthetic model 1, we tested all links that did not
preset causality in this synthetic model, as shown in Fig. C2
(appendix C). Figure C2 also shows that | T 23, [ T35 0112
and |Ty3_,| all show no causalities for 0 < ¢ = 500 and
1500 <= 20007 and |Txl axZ\xS‘v |TX34>)(1L\72|7 and |Tx34>x2|x1| all ex-
hibit a tendency to initially rise and then decline for 500 < ¢t =
1500, but there are both no causalities for 500 < ¢t = 1500, which
aligns well with our initial expectations too.

c. Synthetic model 3

Synthetic model 1 and synthetic model 2 primarily focus on
examining the interactions among three variables, and their
study has successfully demonstrated the reliability of the
MtvLK method in complex systems. Nevertheless, when in-
vestigating land-atmosphere interactions, sometimes it be-
comes imperative to account for the influence resulting from
more than three variables. To address this requirement com-
prehensively, we generated the following five-level autore-
gressive process:

X)) = 0.35x,(t — 1) + ¢;_,(O)x,(t — 1) + &,(1)

(19)

x,(1) = 0.35x,(t — 1) + ¢, ,(Ox,(t = 1) + ¢;_ ,(O)x5(t — 1) + &,(0)

xs(t) = 0.35x5(t — 1) + ¢;_5(Ox, (¢t = 1) + ¢, s(Ox,(t — 1) + &5(¢)

(ITv15xsi2x3.04]), from x, to x3 influenced by x;, x4, and
X5 (| T2 x3ix1 x4xs]), from x, to x4 influenced by x4, x3, and xs
(IT2 xaix1 x3.45), from x5 to x4 influenced by xi, x», and xs
(I3 xaix1 x2.5), and from x4 to xs influenced by x4, x,, and x5
(ITvasxsiv1.x2.03]), Tespectively. All test results effectively repli-
cate the predetermined time-varying causal relationships
within the synthetic model, and the time-varying causal
strength among variables consistently aligns with the preset
conditions. Consequently, this experiment serves as compel-
ling evidence to affirm the efficacy of MtvLK in complex sys-
tems involving more than three variables. It demonstrates the
method’s ability to accurately identify the time-varying causal-
ity between variables within multivariate complex systems.

Similar to synthetic model 1 and synthetic model 2, we
tested all links that did not preset causality in this synthetic
model; the results are shown in Fig. C3 (appendix C). Figures
C3c—n demonstrate that no causal relationships were detected
for all the links without predefined causality for 0 < ¢ = 2000,
These results further prove the accuracy of MtvLK in multi-
variate complex systems.
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FIG. 3. (a) Schematic diagram of the conceptual model as described in Eq. (18) when 0 < 7 = 500 and 1500 < ¢ = 2000.
(b) As in (a), but for the interval 500 < ¢ = 1500. Absolute values of the time-varying information flows among x1, x,, and x3
(in nats per unit time): (c) |Tio—x| and Sigo.1; (d) [T sl and Sigo .y (€) [Tl and Sigw 3 (f) [Tio-al and
Sigo—apt; (8) |Tv1—al and Sigyi 35 () |Ty1— ao] and Sigyy _, 3. Dashed lines represent the causal relationship turning points.
All the results are the averages of 1000 realizations, and all the significance tests are performed at a 1% significance level.

4. Real applications in land-atmosphere interactions

Vegetation is a life support system for the survival and de-
velopment of human society. It is a natural link between soil,
atmosphere, and water, and has complex interactions with the

climate system (Cui et al. 2020; Feng et al. 2017). Vegetation
is part of the terrestrial ecosystem, more specifically, the ter-
restrial biosphere (N. Chen et al. 2021; Liu et al. 2022), and in-
fluences the global carbon and water cycle (Liu et al. 2014;
Pravalie 2018) by regulating carbon balance, alleviating the
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increase of greenhouse gas concentration, and reducing soil
erosion (Le Quéré et al. 2015; Liu et al. 2017; Melnikova and
Sasai 2020; Wang et al. 2021; You et al. 2020). Gross primary
production (GPP) is a good proxy for reflecting vegetation
growth (Liu et al. 2014; Wang et al. 2021). Many studies have
shown that high air temperature and low water availability
can significantly inhibit the growth of terrestrial vegetation,
resulting in decreasing GPP (H. Chen et al. 2021; Chen et al.
2020; Liu et al. 2020; Zhang et al. 2019). It has been found
that soil moisture (SM) and vapor pressure deficit (VPD) are
two important driving factors affecting vegetation growth
(Kimm et al. 2020; Novick et al. 2016). Therefore, understand-
ing how SM and VPD impact GPP is essential for understand-
ing global or regional terrestrial carbon cycles and predicting
future climate change.

In recent years, although the interactions between SM,
VPD, and GPP have been investigated in several studies,
there are uncertainties about which mainly influences GPP:
SM or VPD. SM affects vegetation growth in many ways. It
not only determines the maximum amount of water that can
be absorbed by plant roots (Sperry et al. 2017) but also affects
stomatal conductance of vegetation canopy (Anderegg et al.
2017; Stocker et al. 2018) and controls carbon allocation dur-
ing vegetation growth (Palacio et al. 2014). Jung et al. (2017)
quantified the impact of temperature, solar radiation, and SM
on GPP based on statistical regression methods and found
that SM was the dominant factor of GPP interannual varia-
tion. Liu et al. (2020) pointed out that the reduction in SM
caused by global warming accounts for about 70% of the GPP
variability in the world. On the other hand, VPD also signifi-
cantly impacts vegetation: high VPD may increase evapo-
transpiration, which induces vegetation to close its stomata
to reduce leaf water loss and inhibit plant photosynthesis
(Li et al. 2022; Oren et al. 1999). Along these lines, it has been
proposed that VPD plays a dominant role in influencing GPP
(Besnard et al. 2021; Madani et al. 2020; Wang et al. 2014).
Yuan et al. (2019) found that global vegetation had a decreas-
ing trend after the 1990s, which was mainly due to the signifi-
cant increases in VPD, inhibiting vegetation photosynthesis.
Madani et al. (2020) pointed out that VPD was replacing tem-
perature as the dominant factor controlling global GPP in re-
cent decades because the increase of VPD would lead to
increased vegetation impedance and thus hinder vegetation
photosynthesis.

Besnard et al. (2021) observed that about 56% of the global
vegetation carbon storage is controlled by temperature and
VPD, while the impact of SM accounts for only 29%. Humphrey
et al. (2021) also pointed out that the root cause of the above
controversy is that the influencing mechanism of climate change
on vegetation involves complex land-atmosphere interaction.
Although SM dominates the interannual variability of GPP, it
mainly affects VPD through atmospheric feedback induced by
decreasing soil moisture, and then inhibits vegetation photosyn-
thesis through VPD.

However, previous studies often ignore the influence of
land-atmosphere interactions caused by changes in SM. The
above review of the debate indicates that the causal relation-
ships among SM, VPD, and GPP are complex, including
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FIG. 5. The study area. RA represents a wet area and RB a partly
wet-partly dry climate region.

various direct or indirect causalities. If we analyze the causal
relationship between only two variables, the influence of the
other variables on the system cannot be considered, and the
indirect effects cannot be analyzed, leading to incorrect con-
clusions. For such a complex system, we must consider the in-
fluence of multiple variables on the system simultaneously to
analyze the causal relationship accurately. Therefore, in this
section, we apply the MtvLK to study the mechanism of SM
and VPD in impacting GPP in China, to understand the direct
or indirect causal effects of SM and VPD on GPP in China.
The territory of China features a complex topography and
a diverse climate. Hagan et al. (2019) selected two typical re-
gions, the Huanan region and Huabei region, for their study,
as the climate conditions of these two regions are representa-
tives of strong land-atmosphere interactions. In this study,
these two regions are also selected, as shown as region A
(RA) and region B (RB) in Fig. 5. The latitudes and longi-
tudes of RA range from 25.5° to 29.5°N, and from 113.5° to
118.5°E, respectively. The climate in this region is humid, with
significant precipitation, representing the humid areas of
China. RB, located between 35°-39°N and 111°-~116°E, on the
other hand, is a transitional climate zone between dry and wet
climates, representing the semihumid and semiarid regions in
China. The GPP we will be using is the ensemble mean of
FLUXCOM GPP, which has been widely used to represent
the carbon uptake by land ecosystems (Jung et al. 2017). The
data are gridded at a horizontal resolution of 0.5°, spanning
from January 1979 to December 2018, which the time resolu-
tion is the monthly time step. They can be downloaded from
http://www.fluxcom.org/CF-Download/. Since FLUXCOM GPP
is calculated based on ERAS meteorological driving data, we
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also use the SM and VPD from ERAS5-Land monthly data to
ensure data consistency (available at https:/cds.climate.
copernicus.eu). The weighted average of SM between 0 and
100 cm is used here, with weights determined by the thickness
of each layer (0-7, 7-28, 28-100 cm). VPD is estimated with
the 2-m air temperature and 2-m dewpoint temperature (Allen
et al. 1998). Since the time span of the GPP data differs from
that for SM and VPD, we select the overlapping period from
January 1981 to December 2018. In addition, we calculate
the monthly anomalies for all variables from January 1981 to
December 2018, by subtracting the climatology from the origi-
nal data.

The estimated results may not be accurate enough at the
beginning because the Kalman filter is a learning algorithm.
Hence, we select the 30-yr (360 months) results from January
1989 to December 2018, with the initial spinup period re-
moved. In addition, we have selected a lookback window
length of 90 days for this experiment. Figures 6 and 7 show
the absolute value of the information flow rates between SM,
VPD, and GPP in South China (RA) and North China (RB)
as functions of time from January 1989 to December 2018.
The significance tests of each pixel in the two regions are com-
puted at a 5% significance level. The solid blue line shows the
absolute value of the average information flow of all the indi-
vidual pixels in the selected regions, and the solid red line is
the mean significance test values for all the pixels. Causality is
implied if the solid blue line is higher than the solid red line.
In RA, Figs. 6a and 6b represent the time-varying information
flow from VPD to SM (|Tvpp-_.sm|) and that from VPD to SM
influenced by GPP (|Tvpp-_smaiceel), respectively. It can be
seen that both are almost significant during the whole period
and the results are almost the same. These results suggest that
causality exists from VPD to SM with potentially very little
GPP influence in this region since both results are identical.
These results are identical to the toy model results in Figs. 2¢
and 2d where we also found little influence of the third vari-
able. Additionally, we find a decreasing trend in the strength
of the causality from VPD to SM, potentially due to global
warming. Figures 6¢c and 6d show the time-varying informa-
tion flow from VPD to GPP (|Typp_cpp|) and that from VPD
to GPP influenced by SM (| Tvep_ cppisml), respectively. Both
are also significant most of the time, except between 1998 and
2004. Figures 6e and 6f represent the time-varying informa-
tion flow from SM to GPP (|Tsm_.cpp|) and that from SM to
GPP influenced by VPD (|Tsm_cepvepl), respectively.
Clearly, |Tsm_gpp| is barely significant before 2004; but after
that, the causality increases significantly from 2004 to 2015.
However, |Tsm-cppjvep| is not significant for most of the
time, though it is significant in 2004 and around the peak
causal period of |Tsy_gpp| (2010-12). The difference in the
results might suggest a potential causal structure from SM to
GPP as we have identified in Fig. 2b. In this region, the cau-
sality from SM to GPP might comprise the influence of VPD
on SM (as that from x, to x; in Fig. 2b) and the influence of
VPD on GPP (as that from x, to x5 in Fig. 2b). As a result,
when we only consider |Tsyv_gpp|, We see a similar causality
as we find in Fig. 2i, while if the influence of VPD is consid-
ered, such as |TSM%GPPWPD|, the causal structure undergoes
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tremendous changes. Also, as we have found in Fig. 6f, this
causal structure changes with time, where VPD might play a
mediating role at some time instants (2004, 2010-12), but no
role is in play in the years when \TSM&GPP|VPD| is insignificant.
Nonetheless, it is worth mentioning that, based solely on the
revealed causality, one still can hardly tell the underlying
mechanism; what one gets are merely the probable outcomes
resulting from uncertain causes (Liang 2014). Finally, the im-
pact of SM on VPD is also found to be insignificant in Figs. 6g
and 6h.

Dry anomalies could explain the peaking information flow
we have found around 2010 through 2014, when anomalous
SM conditions would come into play due to increased atmo-
spheric demands, which could, in turn, potentially lead to
drought conditions (Figs. 6e,f). Furthermore, during the same
period where the SM — GPP causality peaks, we also find sig-
nificant lows in the VPD — SM causality (Figs. 6a,b). As
noted by Hagan et al. (2019) and Madani et al. (2020), this is
characteristic of the region RA.

Next, we analyze the mechanism of how SM and VPD af-
fect GPP in RB. Figures 7a and 7b give the time-varying infor-
mation flow from VPD to SM (|Typp_sm|) and that from
VPD to SM influenced by GPP (| Tvep_smigpp|), respectively.
Both results show significant causalities between 1989 and
2018 over the entire period with and without the influence of
VPD, just like that of Figs. 6a and 6b. Similarly, we find a de-
creasing linear trend in these causalities as shown in Figs. 6a
and 6b. Shown in Figs. 7c and 7d are the time-varying infor-
mation flow from VPD to GPP (|Tvpp_cpp|) and that from
VPD to GPP influenced by SM (|7vpp_ Gppism|)- Even though
both are significant during the whole period, |Tvpp_Gpp| is
larger in magnitude than |Tvpp_.gppsm|, With the causal struc-
ture similar to that found in synthetic model 2. This hints at
the existence of potential feedback from SM. Here, we find a
long-term decreasing linear trend in the information flows. In
Figs. 7e and 7f, we see that the information flows from SM to
GPP (|Tsm-cpp|) and from SM to GPP influenced by VPD
(ITsm-cppjvep|) as functions of time. Clearly both are signifi-
cant throughout, with |Tsy_pp| larger in magnitude than
|Tsm-Gppvepl- Just as in Figs. 7c and 7d, the difference in the
magnitude suggests a feedback from VPD. Previous studies
have shown that both SM and VPD are influencing factors of
GPP in semiarid areas although the sensitivity of GPP to
VPD is considered higher than the sensitivity of GPP to SM
(Humphrey et al. 2021). Based on Figs. 7c—f, we can conclude
that SM and VPD both impact GPP over the entire period. In
addition, we also find that the information flow from VPD to
GPP influenced by SM is higher than the information flow
from SM to GPP influenced by VPD. These results agree well
with the relevant research conclusions so far. For instance,
Novick et al. (2016) highlighted the significant impact of VPD
on vegetation ecosystems, surpassing the influence of tempera-
ture and soil moisture. Similarly, Madani et al. (2020) suggested
that VPD has gradually become the dominant factor controlling
global GPP in recent decades, with the main mechanism being
the increase in vegetation resistance due to elevated VPD,
thereby impeding photosynthesis (Fu et al. 2022).
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Finally, we have summarized the aforementioned results to
facilitate a clearer and more intuitive comparison of the differ-
ences between the two regions. First, the causal relationships
among SM, VPD, and GPP in RA are sketched in Fig. 8. We
have divided the results from 1989 to 2018 into three segments
for presentation, The left, center, and right columns in the fig-
ure represent the periods January 1989-December 1998, Janu-
ary 1999-December 2008, and January 2009-December 2018,
respectively. The red arrow indicates that the absolute value of
the information flow (IF) increases in this time range, and the
blue arrow indicates that the absolute value of the IF decreases.
The thickness of the arrow represents the absolute value of the

IF, a thicker arrow indicates a larger absolute value of the IF.
Figures 8al-cl and 8a2—2 represent the causality between VPD
to SM and the causality between VPD to SM influenced by
GPP, respectively. Figures 8d1-f1 and 8d2—f2 represent the cau-
sality between VPD to GPP and the causality between VPD to
GPP influenced by SM, respectively. Figures 8gl-il and 8g2-i2
represent the causality between SM to GPP and the causality be-
tween SM to GPP influenced by VPD, respectively.

As shown in Figs. 8al-cl and 8a2—c2, regardless of whether
the influence of GPP on the system is considered, the magnitude
of causality from VPD to SM generally displays a trend of de-
creasing from 1989 to 2008 and then increasing from 2009 to
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FIG. 8. A schematic of the time-varying causality among SM, VPD, and GPP for RA. Shown are
the time periods (left) January 1989-December 1998, (center) January 1999-December 2008, and
(right) January 2009-December 2018. (al)—(cl),(a2)—(c2) The causality between VPD to SM and the
causality between VPD to SM influenced by GPP, respectively. (d1)—(f1),(d2)~(f2) The causality be-
tween VPD to GPP and the causality between VPD to GPP influenced by SM, respectively. (gl)-
(i1),(g2)~(i2) The causality between SM to GPP and the causality between SM to GPP influenced by
VPD, respectively. (j) The causality between SM to GPP in 200418 and (k) the change of causality
when the influence of VPD is taken into account, and the real causal relationships in 2004-18. The red
arrow indicates that the absolute value of the IF increases, and the blue arrow indicates that the abso-
lute value of the IF decreases. The thickness of the arrow represents the absolute value of the informa-
tion flow.
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2018. Moreover, there is no significant difference in the causal
strength between the two scenarios. Similarly, Figs. 8d1-f1 and
8d2-f2 show that irrespective of considering the influence of SM
on the system, the magnitude of causality from VPD to GPP pri-
marily shows a trend of first decreasing and then increasing dur-
ing 1989-2008 and remains relatively stable within 2009-18, and
there is also no significant difference in the causal strength be-
tween the two scenarios. Figures 8gl-il and 8g2-i2 indicate that
only within the range of 1989-98, whether or not the influence of
VPD on the system is considered, the causality of SM to GPP is
almost negligible, and there is no noticeable difference between
them. However, as shown in Figs. 8h1-il and 8h2-i2, there are
significant differences between the influence of SM on GPP with-
out considering VPD effects and the influence of SM on GPP
when considering VPD effects. When not considering the influ-
ence of VPD on the system, the magnitude of causality from SM
to GPP exhibits a trend of first increasing and then decreasing, as
shown in Figs. 8h1-il. However, when considering the influence
of VPD on the system, there is no direct causality between SM
to GPP, as shown in Figs. 8h2-i2.

To better demonstrate the influence mechanism of SM and
VPD to GPP in RA. we have individually highlighted the most
representative findings, as shown in Figs. 8j and 8k. Figure 8j rep-
resents the causality between SM to GPP in 1999-2018, Fig. 8k
represents the change of causality when the influence of VPD is
taken into account, and the real causal relationships in 1999-2018.
It represents when VPD is added into the system, a change in
causality occurs, so VPD is a common cause of SM and GPP.
Thus, although all these three variables are highly correlated, the
causalities on SM and GPP look like Fig. 8k in 1999-2018. In ad-
dition, we also found the information flow from VPD to GPP in-
fluenced by SM is higher than the information flow from SM to
GPP influenced by VPD. These results show that MtvLK can de-
tect the influence of confounder(s), and correctly identify causali-
ties in complex multivariate systems.

Similar to Fig. 8, the causal relationships among SM, VPD,
and GPP in RB are sketched in Fig. 9. As shown in Figs. 9al—1
and 9a2—c2, regardless of whether the influence of GPP on the
system is considered, the magnitude of causality from VPD to
SM generally shows a trend of increasing first, then decreasing,
and then increasing again in three time periods. Moreover,
there is no significant difference in the magnitude of causality
between the two cases. Figures 9d1-f1 and 9d2—2 show that re-
gardless of whether or not considering the influence of SM on
the system, the magnitude of causality from VPD to GPP is rel-
atively stable from 1989 to 1998, and shows a trend of increasing
first and then decreasing from 1999 to 2008. Finally, it also
shows a trend of increasing first and then decreasing from 2009
to 2018, and the magnitude of causality from 2009 to 2018 is
lower than that from 1999 to 2008. In addition, we also find that
when considering the influence of SM on the system, the magni-
tude of causality from VPD to GPP is lower than that without
considering the influence of SM on the system, this hints at the
existence of potential feedback from SM. Figures 9gl-il and
9g2-i2 represent the causality between SM to GPP without con-
sidering the influence of VPD, and the causality between SM to
GPP with considering the influence of VPD, respectively.
Figures 9g1-il show that without considering the influence of
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VPD, the magnitude of causality from SM to GPP showed an
increasing trend in 1989-98, then showed a decreasing trend in
19992008, and finally showed a trend of increasing first and
then decreasing in 2009-18. Figures 9g2—i2 show that when con-
sidering the influence of VPD, the magnitude of causality from
SM to GPP increased first and then decreased from 1989 to
1998, then remained relatively stable from 1999 to 2008, and fi-
nally increased first and then decreased again from 2009 to
2018. Additionally, when comparing Figs. 9g1-il with Figs. 9g2-i2,
it is evident that the direct causality from SM to GPP persists re-
gardless of whether the influence of VPD is considered. However,
without taking into account the influence of VPD, the magnitude
of causality from SM to GPP is stronger than when the influence
of VPD is considered. This suggests that VPD has a significant im-
pact on the causality from SM to GPP.

Finally, we summarized the influence mechanism of SM
and VPD to GPP in RB, as shown in Figs. 9j and 9k. Figure 9j
shows the causality from SM to GPP in the absence of VPD.
It is consistent with the result in RA. When VPD is added
into the system, the direct causality from SM to GPP still ex-
ists, in contrast to that in RA; besides that, there is also a di-
rect causality from VPD to GPP. Besides these two causal
relations, we note that there also exists an indirect causality
from VPD to GPP via SM, as shown in Fig. 9k. This real-
world problem application shows that SM and VPD influence
GPP in the semihumid area. Moreover, the information flow
from VPD to GPP influenced by SM is larger in magnitude
than that from SM to GPP influenced by VPD. From this, the
MtvLK algorithm can correctly identify the causality in highly
correlated complex systems and effectively give the magni-
tude of causality. It hence provides a powerful tool for causal
inference for complex Earth system problems.

5. Discussion

Identifying causal relationships and quantifying their
strength from time series can help us gain insight into the
physical mechanism underlying the observations: a key prob-
lem in scientific research. The Liang—Kleeman information
flow quantifies the rate of information between systems,
showing both the direction and magnitude within a cause-
and-effect relation (Liang 2014, 2016, 2021). Since it is rigor-
ously formulated from first principles, it avoids the spurious
causality sometimes identified in Granger causality tests and
tests with other statistical formalisms. Due to the fact that LK
is computed based on the covariance between given time se-
ries, the LK is relatively easier to compute compared to other
approaches. Moreover, Liang (2018) demonstrated with a
nonlinear three-dimensional stochastic gradient system that
that LK can still accurately provide potential causal relation-
ships. Nonetheless, the potential limitations should also be
studied in future studies. In this study we extended a previous
solution to the problem of bivariate LK causality estimation
with nonstationary series (Hagan et al. 2019) to the multivari-
ate cases, based on the Kalman filter’s learning algorithm,
which can identify immediate changes when tracking time-
varying information flow within a system. This endeavor
yields a time-varying causal structure as seen in Eq. (16). In
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FIG. 9. A schematic of the time-varying causality among the SM, VPD, and GPP for RB. Shown are
the time periods (left) January 1989-December 1998, (center) January 1999-December 2008, and (right)
January 2009-December 2018. (al)—(cl),(a2)—(c2) The causality between VPD to SM and the causality
between VPD to SM influenced by GPP, respectively. (d1)-(f1),(d2)-(f2) The causality between VPD to
GPP and the causality between VPD to GPP influenced by SM, respectively. (g1)—(il),(g2)—(i2) The cau-
sality between SM to GPP and the causality between SM to GPP influenced by VPD, respectively. (j)
The inferred causal relation between SM and GPP in the absence of VPD in 1989-2018. (k) The causal
relationship among VPD, SM, and GPP in 1989-2018. The red arrow indicates that the absolute value of
the IF increases, and the blue arrow indicates that the absolute value of the IF decreases. The thickness of
the arrow represents the absolute value of the information flow.
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performing the Kalman filter, a lookback window length is
needed to calculate the moving average when estimating Q
and R. Here, we use the exponential weighted moving aver-
age (EWMA) and unweighted moving average (UWMA),
which provide an information length for the window length
lost to do the forward update of the filter. We obtained the
time-varying information flow without missing data by run-
ning the filter backward using the last estimate of the forward
recursion for initialization. Then, we combined both the for-
ward and backward runs together. This algorithm is abbrevi-
ated as MtvLK.

MtvLK has been validated in three idealized synthetic mod-
els, with causality between variables by design varying over
time as shown in Figs. 2-4. In addition, MtvLK effectively sol-
ves the problem of missing window length information in-
curred in choosing a lookback window length to compute the
moving average when using EMWA and UWMA to estimate
Q and R offline. Hence there is no missing value at each time
step in our results. Additionally, the estimated time-varying
causality accurately reproduces the preset causality in the
models. This is because Kalman filtering has the ability to de-
tect changes. Therefore, immediate changes along time will
be preserved when estimating causal relationships using the
MtvLK, which is challenging to achieve in non-time-varying
LK information flow and methods based on standard sliding
windows. In addition, the principle of nil causality, which ap-
pears as a theorem in the LK formula (Liang 2014, 2016,
2021), is also met in the MtvLK estimate, while with some
commonly used causal inference approaches this may not al-
ways be true. Moreover, even with highly correlated series,
MtvLK is still effective, as verified with the toy model
(namely, the synthetic model 1): Although the confounding
variable x, exists in the system, MtvLK can still correctly iden-
tify the real causality in the multivariable system.

We have also applied the MtvLK in a real-world problem
to investigate how SM and VPD affect GPP in two selected
typical regions of China. Our results show that over the humid
Huanan region in southeastern China, causality exists from
VPD to GPP. While SM is highly correlated with GPP, no di-
rect causality exists between SM and GPP. In the semihumid
and semiarid Huabei regions, direct causality exists both from
VPD to GPP and from SM to GPP.

There is still more room to improve the MtvLK algorithm.
Attention needs to be paid particularly on three issues: First,
the computation is rather expensive because of the Kalman
filter used here, so the computational efficiency is significantly
lower than the original estimation of causality as documented
in Liang (2021). The use of EMWA and UWMA to estimate
Q and R would need further improvement to avoid defining a
time window length. A more objective way to define a win-
dow length would provide a better estimation for the proba-
bility density function of the causal structure. Finally, future
studies on MtvLK should look into incorporating a frequency
domain as was done by Hagan et al. (2019) to show causalities
at different time scales which is important to isolate long- and
short-causal impacts. After these optimizations, a fully op-
timized MtvLK will represent a method with immense po-
tential. Not only can it shed new light on the intricate
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time—frequency causality relationships in land—atmosphere
interactions, but it can also be applied to analyze complex
causal relationships in various other fields, such as finance,
further enhancing our understanding of causality issues
across diverse domains.
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APPENDIX A

Solution for Missing Window Length Information Length

Consider a d-dimensional system. First, we compute the
time-varying information flow from x, to x; based on Eq. (16),
denoted as 7,_,;. Aiming at the problem of missing values
in the initial lookback window, we reverse the time series
of x; and x,, denoted as x] and xj, respectively. Then we
compute the time-varying information flow from x| and x},
denoted as T _,. Next we reverse the obtained result
Ty 2, and denote it as T7,_,.. This step reverses the miss-
ing value in the initial lookback window to the tail of the
sequence. Finally, we replace the missing value of the initial
lookback window in 7,_,; with the corresponding region in
T},_, to obtain the final result without missing values. It is im-
portant to highlight that although this method effectively ad-
dresses the issue of missing values in the initial backtracking
window, we contend that it does not provide a comprehensive
explanation of the underlying physical mechanisms involved in
the backtracking window. This limitation arises from the fact
that the method calculates based on reverse-engineered time
series, essentially employing backward data computation to
move forward. Therefore, while the information flow values ob-
tained from this method can serve as a reference for discerning
causal relationships between variables in the backtracking win-
dow, they are inadequate for effectively elucidating the associ-
ated physical mechanisms.

APPENDIX B

Significance Test

For the statistical tool such as that in Eq. (16), significance
testing enables us to better understand the robustness of the
derived result. When N is large, the information flow is ap-
proximately normally distributed around their true values with
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where | is a (d + 2) X (d + 2) matrix, namely, the Fisher
information matrix. The inverse (NI)~!' is the covariance
matrix of 8, which has 0-312; p is the marginal probability of
{X,.}, a Markov process. For details, refer to Liang (2021).

APPENDIX C

Addition Testing of the Synthetic Model
a. Synthetic model 1

To further verify the accuracy of MtvLK in complex mul-
tivariate system, we tested all the links in synthetic model 1
that did not preset causality by using the same conditions
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outlined in section 3. The time-varying information flow re-
sults (in nats per unit time) are presented in Fig. C1. The
results show that |Ty3_,1pw| and | Ty are both no cau-
salities for 0 < ¢ = 2000. These results align with the design
in Eq. (17).

b. Synthetic model 2

The time-varying information flow results (in nats per
unit time) that did not preset causality in synthetic model 2
are shown in Fig. C2. The results show that |Tyi_.opsl,
|T3x1px2l, and |Ty3_ o] are all no causalities for 0 < ¢ <
2000. These results align with the design in Eq. (18).

c. Synthetic model 3

The time-varying information flow results (in nats per
unit time) that did not preset causality in the synthetic
model 3 are shown in Fig. C3. Figures C3c-n show that all
the test links show no causalities for 0 < ¢ = 2000. These
results align with the design in Eq. (19).
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FI1G. C1. (a) Schematic diagram of the conceptual model as described in Eq. (17) when 0 < ¢ = 500 and 1500 < ¢ = 2000,

(b) As in (a), but for interval 500 < ¢ = 1500. Absolute values of the time-varying information flows among xy, x,, and x3
(in nats per unit time): (c) |T\a_xipel and Sigys_ape; (d) |Tiaoap| and Sigys_, . Dashed lines represent the causal rela-
tionship turning points. All the results are the averages of 1000 realizations, and all the significance tests are performed at a
1% significance level.
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