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Abstract
Fuzzy Cognitive Maps (FCMs) are a graph-based methodology successfully applied for knowledge representation of

complex systems modelled through an interactive structure of nodes connected with causal relationships. Due to their

flexibility and inherent interpretability, FCMs have been used in various modelling and prediction tasks to support human

decisions. However, a notable limitation of FCMs is their susceptibility to inadvertently capturing spurious correlations

from data, undermining their prediction accuracy and interpretability. In addressing this challenge, our primary contri-

bution is the introduction of a novel framework for constructing FCMs using the Liang-Kleeman Information Flow (L-K

IF) analysis, a quantitative causality analysis rigorously derived from first principles. The novelty of the proposed approach

lies in the identification of actual causal relationships from the data using an automatic causal search algorithm. These

relationships are subsequently imposed as constraints in the FCM learning procedure to rule out spurious correlations and

improve the aggregate predictive and explanatory power of the model. Numerical simulations validate the superiority of

our method against state-of-the-art FCM-based models, thereby bolstering the reliability, accuracy, and interpretability of

FCMs.
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1 Introduction

As the Industry 4.0 (I4.0) era approaches, factories come

closer to advanced technologies, such as Artificial Intelli-

gence (AI) and Industrial Internet of Things (IIoT), to

significantly enhance their performance through innovative

methods (Gilchrist 2016). For instance, through real-time

data collection and processing, manufacturers can monitor

the system condition, detect possible anomalies, and

promptly inform supervisors to take action before the

anomalies become severe and lead to production downtime

(Wang et al. 2022). Several AI solutions, such as Support

Vector Machines and Artificial Neural Networks, have

been presented, demonstrating great accuracy in predicting

production line malfunctions (Li et al. 2017). However,

their black-box nature makes their outcome explanation

challenging, which leads to supervisors’ reduced trust in

the AI models and, thus, hinders their deployment in crit-

ical applications where humans make the final judgment,

for example, industrial anomaly detection (Rehse et al.

2019). Furthermore, the lack of transparency and inter-

pretability hinders the efficient identification of weaknesses

in AI algorithms and their subsequent improvement (Alfeo

et al. 2023). Therefore, there is a need to develop AI

models with transparent and interpretable behavior that can

provide explanations, enabling end-users to understand
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decision-making processes, explore impactful input factors,

delve into model mechanics, and respond appropriately

(Carletti et al. 2019).

Recently, a new research direction called eXplainable

Artificial Intelligence (XAI) has emerged that deals with

developing techniques, algorithms, and tools that produce

human-comprehensible explanations of the decisions of

AI-based systems (Adadi and Berrada 2018). These

explanations can take various forms depending on the

application, including IF-THEN rules that express input–

output data relationships, visual highlighting, for example,

the important parts of input images for model predictions,

feature importance rankings, textual explanations, and

counterfactuals, among others (Kök et al. 2023). The

transition from AI to XAI is imperative for successfully

integrating automated decision-making into production

environments in which humans make supervision and final

decisions.

In recent years, the research community has introduced

two main categories of XAI methodologies based on their

implementation. These categories are:

• Post-hoc explanation methods: External techniques

that seek to explain black-box models by approximating

them either globally or locally using interpretable sur-

rogate models.

• Intrinsic interpretable models: Models that can

explain their predictions by themselves.

However, while post-hoc methods have been valuable in

interpreting complex decision processes, certain limitations

have motivated a shift towards intrinsic interpretable mod-

els. These challenges arise from the fact that the surrogate

model may not accurately reflect the actual behavior of the

underlying black-box model, leading to misleading expla-

nations (Rudin 2019). Furthermore, even if the surrogate

model approximates well, it may rely on different features

compared with the black-box model, further contributing to

explanations inconsistent with the original model. Another

disadvantage is that the explanations of these techniques

can be easily manipulated to be acceptable through specific

frameworks, even if the base model is highly biased (Slack

et al. 2020). Finally, when the dataset includes interrelated

features, the assumption of feature independence made by

commonly used post-hoc methods such as permutation

feature importance, Local Interpretable Model-agnostic

Explanations (LIME) method, and SHapley Additive

exPlanations (SHAP) method can result in misleading

explanations (Aas et al. 2021). Thus, these disadvantages

have heightened research interest in learning intrinsic

interpretable models, whose decisions can be explained

without additional techniques, representing assimilated

knowledge in a manner consistent with human thought

(Alonso et al. 2015).

In light of the challenges posed by post-hoc methods,

the inherent adaptability and interpretability of fuzzy sys-

tems have emerged as promising solutions. Zadeh’s foun-

dational work on fuzzy sets has paved the way for

developing fuzzy systems that can model complex systems

using a higher level of abstraction in a human-under-

standable form (Zadeh 1965; Chen and Niou 2011). The

interpretability of these systems is not merely incidental; it

is a core feature rooted in their ability to capture and

represent knowledge in a way that reflects human cognition

and provides a detailed understanding of complex systems

and their underlying dynamics (Chen and Chen 2002). This

makes fuzzy systems essential in the shift from post-hoc

methods to inherently interpretable models (Chen and Jian

2017). Furthermore, fuzzy systems have proven valuable in

forecasting (Pant and Kumar 2022). In particular, fuzzy

forecasting techniques, which leverage fuzzy logical rela-

tionships, present a novel method for predicting the

behavior of complex systems (Chen and Wang 2010; Chen

et al. 2006). In related work, Petri Nets, which are viewed

as a tool for fuzzy modeling, face challenges such as the

state explosion problem, reminiscent of the issues with

black-box models (Shen et al. 2013). This issue arises

when these nets become so large that their behavior

becomes challenging to monitor, leading to inefficiency.

Such challenges echo the problems observed with black-

box models, highlighting the pressing need for models that

balance complexity with clarity (Chen and Fang 2005). As

the focus shifts towards intrinsic interpretable models, the

fusion of fuzzy logic and advanced techniques has become

evident. Merging fuzzy logic with techniques, such as

neural networks and expert systems, results in neuro-fuzzy

methods that provide a robust approach to knowledge

representation. This fusion effectively bridges human

cognition with sophisticated computational models,

ensuring clarity and computational prowess (Chen et al.

2009).

Fuzzy Cognitive Maps (FCMs), a type of recurrent

neural network, are widely used intrinsic inter-

pretable models for knowledge representation. They typi-

cally integrate fuzzy logic features during development,

classifying them as a neuro-fuzzy method (Kosko 1986).

Specifically, FCMs are directed graphs consisting of nodes

called concepts representing the components of the mod-

eled system or conceptual entities, which can be seen as

information granules, and incorporate weighted edges that

describe the causal relations between them. This charac-

teristic places FCMs within the area of granular computing,

which focuses on the conceptualization and processing of

information granules (Papageorgiou and Stylios 2008).

FCMs find applications in modeling complex systems,

including industrial systems, and in addressing prediction

problems such as time-series forecasting and classification

2022 Granular Computing (2023) 8:2021–2038

123



(Wang et al. 2021; Song et al. 2011; Loia et al. 2016).

FCMs offer several advantages due to their unique

characteristics:

1. They can use experts’ assessments when the collected

data are insufficient,

2. Their graphical structure provides an intuitive repre-

sentation where concepts and weights have a well-

defined meaning for the system under analysis,

3. They provide feature-based explanations for their

predictions, being inherently interpretable,

4. The inference process of FCMs is visually transparent,

enabling users to comprehend the decision-making

process leading to predictions,

5. Experts can modify the weights of FCMs to encode

rules that have not yet been observed in data (e.g., a

new type of fault in the manufacturing system),

providing a level of flexibility unattainable in other

intrinsic interpretable models,

Given the aforementioned advantages, FCMs have gar-

nered significant interest from researchers and have proven

to be extremely useful across various domains (Papageor-

giou and Salmeron 2013). For instance, in the industry

context, Lee et al. (1997) proposed an FCM-based model

for fault diagnosis in a tank-pipeline system that success-

fully identified various simulated faults, whereas Stylios

and Groumpos (1998) presented an FCM-based supervisor

of manufacturing systems for failure detection and decision

analysis. Lastly, Tirovolas and Stylios (2022) proposed

FCMs as a health indicator prognostic method for engines’

remaining useful life in the context of predictive mainte-

nance. However, while the literature often highlights the

interpretable nature of FCMs, this is primarily based on the

clarity of their concepts and weights, rather than a

demonstration of their explanatory performance. Therefore,

thorough numerical simulations should be performed to

determine the capabilities of FCMs to explain their

decisions.

To evaluate the interpretability features of FCMs, it is

crucial to understand their development processes. Cur-

rently, two fundamental methods for FCM construction are

found in the literature: (a) expert-based and (b) data-driven

approaches (Papageorgiou and Stylios 2008). In the expert-

based method, FCM concepts and weights are determined

solely based on domain experts’ knowledge, which is

incorporated into the model using fuzzy logic theory

(Stylios and Groumpos 2004). However, this approach

relies heavily on the expertise level of individuals, poten-

tially leading to unsatisfactory performance, as experts may

overlook essential aspects of the problem and assign

inappropriate weight values (Song et al. 2009). On the

other hand, the data-driven approaches automatically

define FCM parameters from available data using learning

algorithms or calculate interconnection weights as corre-

lation coefficients between variables (Papageorgiou 2012;

Czerwinski et al. 2021; Nápoles et al. 2020a). Specifically,

when learning algorithms are employed without prior

expert knowledge, the presence of all weights is usually

assumed, leading to an over-parameterized model, or the

interconnections between concepts are arbitrarily estab-

lished (Nápoles et al. 2020b).

Nevertheless, the dataset may contain spurious corre-

lations that can be unintentionally captured from the FCM

and bias the learning process. This introduces fragility to

the FCM, compromising its reliability, prediction accuracy,

and interpretability (Forward 2022; Wang and Culotta

2021). Indeed, the employed learning algorithms, per-

forming as black boxes, aim to fit the FCM to the available

data based on passively observed historical correlations,

which can indicate a predictive relationship among vari-

ables. However, these algorithms do not consider the

semantics of the analyzed system and thus fail to distin-

guish between causal and spurious relationships. Therefore,

without establishing appropriate constraints beforehand,

these algorithms are fooled by illusory patterns and assign

weight values to the corresponding edges, resulting in an

FCM that does not represent the authentic system interac-

tions; instead, it learns the correlational associations

between features. Consequently, when the assimilated

spurious correlations break down, the model’s predictions

inevitably fail, while the explanations are erroneous, as the

FCM misconstrues the relationships between the problem

variables. Similarly, relying on the correlation coefficient is

equally unreliable because it has been shown that correla-

tion does not necessarily imply causality (Rohrer 2018). In

the domain of industrial anomaly detection, such an FCM

proves ineffective, as its explanations misdirect plant

supervisors to irrelevant parts of the manufacturing system,

hindering the identification of the root causes of faults.

Such gaps provide the motivation to develop new methods

that identify authentic causal relationships between prob-

lem variables and rule out possible spurious correlations

(Nápoles et al. 2020b). In this direction, Yosef et al. (2022)

presented a method for removing spurious correlations by

calculating the concepts’ behavioral similarity through data

and applying a set of defined rules from domain experts to

discern the actual causal relationships. However, through

this approach, an FCM can still contain spurious correla-

tions that experts consider acceptable, while some actual

causal associations can remain undetected as they can be

beyond experts’ knowledge. Finally, this expert-driven

causality analysis is unfeasible for highly complex systems

with many variables.

A potential solution to these limitations is to devise a

method that identifies the real causal structure of an FCM

from observational data, eliminating the need for domain
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experts. By doing so, this method can offer a significant

contribution in two ways: (a) preventing the injection of

spuriousness into these cognitive networks, thereby

enhancing their prediction accuracy and interpretability,

and (b) providing a tool that can efficiently handle large-

scale problems. Notably, a distinguishing contribution of

this work is that, to the best of the authors’ knowledge, no

other data-driven causal discovery method has been sug-

gested to rule out spurious correlations in FCMs, thereby

elevating their performance and robustness.

This paper’s main contribution is introducing a novel

approach for FCM construction, leveraging the Liang-

Kleeman Information Flow (L-K IF) analysis for causal

inference. In more detail, unlike the approach presented by

Yosef et al. (2022), the proposed technique contributes by

eliminating the necessity for expert involvement; it iden-

tifies the authentic causal relationships from the data using

an automatic causal search algorithm. A pivotal part of our

contribution is the imposition of the derived causal links as

constraints during the FCM learning procedure. This

strategic move is tailored to effectively remove spurious

correlations and, in doing so, improve the FCM’s aggregate

predictive and explanatory power. The capabilities of the

proposed method are demonstrated in the context of

developing an XAI model for anomaly detection and root

cause analysis in an industrial system. Finally, a compar-

ative analysis is conducted between the developed FCM

and state-of-the-art FCM-based models in terms of their

predictive and explanatory power. It is worth noting that

while the presented case study focuses on anomaly detec-

tion, the proposed method can be effectively employed in

other prediction problems as well. For further details and

implementation, the code for this study is available in

Tyrovolas et al. (2023).

The rest of the paper is organized as follows. Section 2

presents the foundations of the classic FCM formalism and

L-K IF analysis. Section 3 describes in detail the proposed

methodology, including the model’s development process

and how to predict and interpret its results. Section 4

conducts extensive numerical simulations to compare the

proposed model against state-of-the-art FCM-based mod-

els. Finally, Sect. 5 presents some concluding remarks.

2 Theoretical background

This section first presents some basic notions of FCMs

regarding their structure and how they perform the simu-

lations. Second, it describes the causal inference tool L-K

IF analysis, used to determine the actual causal relation-

ships between the analyzed system variables.

2.1 Fuzzy cognitive maps

As mentioned in Sect. 1, an FCM consists of n concepts

Ci ; i 2 f1; 2; � � � ; ng, and weights wij 2 ½�1; 1� that indi-

cate the causal influence from Ci to Cj. In general, there are

three kinds of causality:

• Positive causality (wij [ 0Þ: the affected variable (Cj)

changes (increases or decreases) in the same direction

as its cause variable (Ci) changes.

• Negative causality (wij\0Þ: the affected variable (Cj)

changes in the opposite direction to its cause variable

(Ci) change.

• Zero causality (wij ¼ 0Þ: there is no relation between

the cause (Ci) and the affected (Cj) variable.

Each concept Ci has an activation value Ai, which is

determined via a reasoning rule, where the most common is

A
ðtþ1Þ
i ¼ f

Xn

j ¼ 1

j 6¼ i

A
ðtÞ
j wji

0

BBBBB@

1

CCCCCA
; ð1Þ

where t is the iteration step, A
ðtþ1Þ
i denotes the activation

value of the i-th concept at ðt þ 1Þth iteration step, A
ðtÞ
j

denotes the activation value of the j-th concept at tth iter-

ation step, wji denotes the causal weight from jth concept to

i-th concept, and f ð�Þ denotes the activation function that

normalizes the concepts’ activation values within a speci-

fied interval (Kosko 1986). The most known activation

functions are bivalent, trivalent, hyperbolic tangent, and

sigmoid, where depending on which is selected, A
ðtþ1Þ
i

receives values within the [0, 1] or ½�1; 1� intervals (Orang
et al. 2022). The activation values of all concepts in each

iteration step can be expressed as a state vector A 2 Rn,

while the values of the causal weights wij between each

pair of concepts Ci and Cj, compose a weight matrix

W 2 Rn�n, whose diagonal elements are equal to zero.

Therefore, (1) can be rewritten as:

AðtÞ ¼ f ðAðt�1ÞWÞ: ð2Þ

Using (2), the activation values of the concepts in each

iteration step are computed. An initial state vector Að0Þ,
which includes input data (e.g., sensor data), triggers the

FCM’s iterative reasoning process (Falcon et al. 2019).

Subsequently, a new state vector yields at each iteration

step until the termination condition is satisfied, which can

be either the FCM’s convergence to an equilibrium point,

leading to reliable results, or the completion of a maximum

number of iterations, where the FCM exhibits cyclic or

chaotic behavior (Kosko 1988).
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2.2 Information flow

As mentioned above, accurately identifying authentic

causal relationships between variables in a modeled system

is crucial for developing efficient FCMs. Causality infer-

ence from data is a notoriously difficult problem that has

been extensively studied for over half a decade (Egrioglu

et al. 2022). Various methods (mostly statistical) have been

proposed to address this challenge, but these often suffer

from certain limitations (Eichler 2013; Hlavacko-

vaschindler et al. 2007; Runge et al. 2012). Some of these

approaches are qualitative, lacking the necessary quanti-

tative information for this research’s purpose, while other

methods are empirically or half-empirically formulated,

which, although successful in specific contexts, lack the

desired universality for developing all-purpose algorithms.

Recently, it has been realized that causality is actually a

real physical notion called Information Flow (IF) and can

be rigorously derived from first principles (Liang

2014, 2016). Specifically, IF describes the contribution of

one variable’s entropy per unit of time in increasing the

marginal entropy of another variable and reflects the

magnitude, kind, and direction of their cause-effect rela-

tionship. This offers a promising way to systematically

formulate causality analysis in a quantitative sense based

on a rigorous theoretical framework, enabling its universal

applicability across different disciplines. The fundamental

equations for calculating the IF between two or more

system variables are as follows.

Let be a two-dimensional (2-D) dynamic system:

dx ¼ Fðx; tÞdt þ Bðx; tÞdw; ð3Þ

where F ¼ ðF1;F2Þ is the deterministic components, x ¼
ðx1; x2Þ 2 R2 is the state variables, w ¼ ðw1;w2Þ is a

standard 2-D Wiener process, and B ¼ ðbijÞ is the matrix of

perturbation amplitude (Liang 2008). For the aforemen-

tioned system, the IF from x2 to x1 is

T2!1 ¼ �E
1

q1

oF1q1
ox1

� �
þ 1

2
E

1

q1

o2g11q1
ox21

� �
; ð4Þ

where q t; x1; x2ð Þ is the joint probability density function,

q1 t; x1ð Þ ¼
R
R
qdx2 is the marginal density of x1,

g11 ¼
X2

k¼1
b21k, and E is the expectation with respect to

q. An important property of (4) is the satisfaction of the nil

causality principle, according to which x2 is not causal to

x1 (T2!1 ¼ 0) if the evolution of the latter is independent of

the former (neither F1 nor g11 depends on x2) (Liang 2016).

As a further step, Liang (2014) established that under a

linearity assumption, the IF of two system variables can be

estimated from only two time series, say, X1 and X2, using

the following maximum-likelihood estimator of (4):

T2!1 ¼
C11C12C2;d1 � C2

12C1;d1

C2
11C22 � C11C

2
12

; ð5Þ

where Cij is the sample covariance between Xiand Xj, and

Ci;dj ¼ ðXi � XiÞð _Xj � _XjÞ is the sample covariance

between Xi and the difference approximation of
dXj

dt
, which

is computed using the Euler forward scheme:
_Xj;n ¼ Xj;nþk � Xj;n

� �
=ðkDtÞ, with k� 1 some integer. The

IF in the opposite direction, i.e., T1!2, is obtained by

swapping indices 1 and 2. Besides, writing (5) as a function

of correlation and/or correlation-like quantities gives

T2!1 ¼
r

1� r2
ð�r2;d1 � r �r1;d1Þ; ð6Þ

where r ¼ C12=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C22

p
is the sample correlation coeffi-

cient between X1 and X2, and �ri;dj ¼ Ci;dj=
ffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
ði; j ¼

1; 2Þ is the ‘‘correlation’’ between Xi and _Xj but normalized

with the variances of Xi and Xj. According to (6), when two

variables are causally related (T2!1 6¼ 0), they are corre-

lated (r 6¼ 0). However, the opposite does not hold. This

property helps distinguish authentic causal relationships

from spurious correlations.

Recently, (5) was generalized, resulting in a simple

formula for causality analysis among multiple variables

(Liang 2021). In detail, given a dataset of d time-series

variables, the IF from X2 to X1 is

T̂2!1 ¼
1

detC
�
Xd

j¼1

D2jCj;d1 �
C12

C11

; ð7Þ

where Cj;d1 is the sample covariance between Xj and _X1,

and Dij are the cofactors of the covariance matrix C. An

algorithm (Algorithm 1) for multivariate time-series

causality analysis is developed based on (7). As observed

from the algorithm, a statistical significance test is con-

ducted to draw safe conclusions about the actual causal

relationships for each pair of variables, estimated by T̂ i!j.
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Nevertheless, the importance of the causal relationship

must be assessed more than by inspecting the presence of

causality between variables. For this purpose, the normal-

ization of the estimated significant IF rates has been pro-

posed with the normalizer of T̂2!1 being

Ẑ ¼
�����

ddH�
1

dt

� ������þ
Xd

j¼2

jT̂ j!1j þ
�����

ddHnoise
1

dt

� ������; ð8Þ

where

ddH�
1

dt

� �
¼ 1

detC
�
Xd

j¼1

D1jCj;d1; ð9Þ

ddHnoise
1

dt

� �
¼ 1

2

ĝ11
C11

; ð10Þ

and ĝ11 ¼
QN;1Dt

N . Finally, the normalized IF from X2 to X1

is:

s2!1 ¼
T2!1

Ẑ
ð11Þ

which lies on ½�1; 1�. When js2!1j is 1, X2 has the greatest

causal impact on X1. Furthermore, simply swapping the

indices in the above equations yields s1!2.

2.3 L-K IF analysis on binary time series

Previous studies utilizing L-K IF analysis to identify causal

relations have not focused on discrete-valued signals that

take a few values, such as a binary time series. However,

real-world datasets, particularly in industrial settings, often

comprise binary variables such as the state of a proximity

sensor or button. Consequently, an experiment was con-

ducted to verify the efficiency of the causal inference tool

in effectively handling binary data.

Let be three series X1, X2, and X3, generated from three

autoregressive processes:

X1ðnþ 1Þ ¼ 0:1þ 0:4X1ðnÞ � 0:8X3ðnÞ þ e1ðnþ 1Þ;
ð12aÞ

X2ðnþ 1Þ ¼ 0:7þ 0:7X3ðnÞ � 0:8X2ðnÞ þ e2ðnþ 1Þ;
ð12bÞ

X3ðnþ 1Þ ¼ 0:5þ 0:5X3ðnÞ þ e3ðnþ 1Þ; ð12cÞ

where X3 is the confounder of the other two (X3 ! X1 and

X3 ! X2) without any other causality, and the errors,

e1 �Nð0; 1Þ, e2 �Nð0; 1Þ and e3 �Nð0; 1Þ are indepen-

dent. After initializing the variables with random values

and generating 10,000 samples for each, L-K IF analysis

was performed. Table 1a depicts the derived IF rates and

their respective confidence intervals at the 99% confidence

level. The results demonstrate that the only significant IF

rates are T3!1 and T3!2 as they lie within the intervals

[0.1975, 0.2091] and [0.0613, 0.0657], respectively, which

is in agreement with the actual relations. The rest of Ts take

both negative and positive values; thus, they cannot be

distinguished from zero. It is noteworthy that creating

pseudorandom values can lead to slightly different results

for different series. Nevertheless, the mean is expected to

converge to the same value when an ensemble of series is

examined. Subsequently, the experiment was repeated

using the binarized time series, that is, the series discretized

into 0 or 1. After repeating the L-K IF analysis (Table 1b),

it is concluded that the proposed technique reliably cap-

tures the causal relations in a qualitative sense, even if the

time series have been binarized.

3 Proposed methodology

Figure 1 illustrates the proposed methodology, outlining

the major phases of constructing an FCM-based model and

interpreting its predictions.
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3.1 Data pre-processing

Once data are collected from the target system, such as a

manufacturing system, suitable data pre-processing tech-

niques are employed. Initially, since FCM can only handle

numeric data, categorical variables, including class attri-

butes in a classification problem, need to be encoded. The

numerical representative (aj 2 ½0; 1�) for each class label

(classj) is calculated using the following formula:

aj ¼
j� 1

m� 1
; ð13Þ

where j 2 f1; . . .;mg and m� 2 the number of class labels.

In the context of FCMs, an essential step is the assign-

ment of fuzzy values to concepts, known as data fuzzifi-

cation. Fuzzification is practically considered a data

normalization procedure that computes the concepts’ initial

activation values for each data observation. Traditional

normalization techniques include min-max and z-score

normalization; however, they present some weak points,

such as out-of-bounds error when a new value is outlying

and susceptibility to outliers. Furthermore, min-max nor-

malization yields different normalizations for different data

separations, such as in cross-validation. To address these

issues, the Generalized Logistic (GL) algorithm was uti-

lized in this study for data normalization (Cao et al. 2016).

This algorithm makes no assumptions about the distribu-

tion of variables but instead uses a generalized logistic

function to approximate the cumulative distribution func-

tion (CDF) of each variable. The main advantage of this

method is its robustness against outliers. The algorithm

maps values from interval (�1, 1) to the interval [0, 1].

3.2 Information flow-based fuzzy cognitive map
(IF-FCM)

After preparing the data, the next step is to define the FCM

architecture that determines the type and number of con-

cepts. In the context of classification, the literature presents

two main FCM architectures, which differ in the number of

output concepts (OCs), but also in how they assign a class

label for each data instance. The first architecture, known

as the class-per-output architecture (CpO), maps each

class label to a separate OC with m total outputs. The

predicted class is then indicated by the OC with the highest

activation value in the last iteration of the reasoning pro-

cess. In contrast, in the second architecture, referred to as

the single-output architecture (SO), the class attribute is

mapped to a single OC Cn. The estimated activation value

of Cn is then assigned to one of the class labels by dividing

the activation interval ([0, 1] or ½�1; 1�) into partitions,

each corresponding to a class label (Papakostas et al.

2008). The classification process in an FCM-SO can be

summarized as follows:

Step 1: Consider the kth data observation in the dataset

as the initial state vector

A
ð0Þ
k ¼ ½Að0Þ

1k ;A
ð0Þ
2k ; . . .;A

ð0Þ
nk ¼ 0�; ð14Þ

where A
ð0Þ
ik 2 ½0; 1�, i 2 f1; 2; . . .; n� 1g are the initial

activation values of the input concepts, and A
ð0Þ
nk the

initial activation value of the OC

Step 2: Applying the employed reasoning rule recur-

rently, calculate the state vector

A
ðlÞ
k ¼ ½AðlÞ

1k ;A
ðlÞ
2k ; . . .;A

ðlÞ
nk �; ð15Þ

in the steady state l, whereas jAðlÞ
ik � A

ðl�1Þ
ik j\e, with e

being a small positive number (usually 10�5), and

Table 1 IF rates for the series

generated with (12) and their

respective confidence intervals

(99% confidence level)

Granular Computing (2023) 8:2021–2038 2027

123



i 2 f1; 2; . . .; ng. The maximum number of iterations is

denoted by T and defined by the user. A
ðlÞ
nk is the acti-

vation value of the OC in the last iteration.

Step 3: Once the reasoning process is complete, assign

A
ðlÞ
nk to one of the numerical representatives of the class

labels. This is accomplished using m� 1 defined deci-

sion thresholds that divide the activation interval into m

partitions. Therefore, depending on the range A
ðlÞ
nk falls

into, the FCM predicts the corresponding class label. To

determine the decision thresholds, a ‘‘threshold-moving’’

approach is employed, which identifies the optimal value

based on a predefined evaluation metric. In this paper,

we locate the decision threshold by considering the

maximum value of the Geometric Mean (16), which

describes the balance of classification performance on

both majority and minority classes, allowing us to

determine the ideal position of the classification hyper-

plane (Kubat et al. 1997).

G� mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPR � TNR

p
ð16Þ

In this study, the second architecture was selected because

of its lower parameter count and computational require-

ments. Additionally, a comprehensive analysis of the

architectures conducted in prior research, the study by

Papakostas et al. (2012), concluded that the SO

Fig. 1 Proposed methodology

scheme
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architecture outperformed the CpO architecture on seven of

the eight datasets analyzed.

3.3 IF-FCM learning

After determining the architecture, a learning procedure is

performed to adapt the FCM behavior based on the col-

lected data (Fig. 1). The proposed approach is divided into

two phases. In the first phase (Training phase 1), Algo-

rithm 1 is executed to determine the causal relationships

between the dataset variables. The algorithm is computa-

tionally efficient, even when the scales of the original

variables differ greatly; therefore, raw encoded data are

used.

In the second phase (Training phase 2), the parameters

that define the FCM response are tuned, including the

weights and parameters associated with the activation

function and reasoning rule. Consequently, a challenging

question arises regarding the choice of the appropriate

reasoning rule and activation function. Previous studies

have shown that using (1) in conjunction with the activa-

tion functions mentioned in Sect. 2.1 often leads the FCM

to converge to the same equilibrium point regardless of the

initial state vector (Boutalis et al. 2009). However, this

behavior is undesirable in forecasting tasks, such as

anomaly detection, as the model predicts only one class

label. Furthermore, the use of bounded activation functions

can lead to saturation issues, where the activation values of

concepts tend to approach the lower or upper boundary of

the specified interval when they receive a strong negative

or positive influence, respectively (Nápoles et al. 2022a).

Finally, the sigmoid function deceives the simulation

results by activating unexpected concepts based on their

received influence, as it returns 0.5 when its argument is

zero (Mpelogianni and Groumpos 2018).

Recently, to solve the issues mentioned above, a new

rule called quasi nonlinear reasoning rule was proposed,

which involves a re-scaled activation function acting as a

normalizer (Nápoles et al. 2022b), and is mathematically

expressed as

A
ðtþ1Þ
i ¼ uf

Xn

j ¼ 1

j 6¼ i

A
ðtÞ
j wji

0
BBBBB@

1
CCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nonlinear component

þ ð1� uÞAð0Þ
i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

linear component

;
ð17Þ

where the parameter u 2 ½0; 1� controls the nonlinearity of

the reasoning rule, and f ð�Þ : Rn ! Rn is the activation

function defined as

f ðXÞ ¼
X

kXk2
; X 6¼ 0

!

0; otherwise

8
<

: ð18Þ

such that k � k2 denotes the Euclidean norm. Using a

matrix-like notation, (17) is rewritten as

AðtÞ ¼ uf Aðt�1ÞW
	 


þ ð1� uÞAð0Þ: ð19Þ

In the study conducted by Nápoles et al. (2022a), the

convergence properties of the above reasoning mechanism

were thoroughly examined. Through a mathematical proof

by contradiction, it was concluded that an FCM employing

(18) and (19) does not have a unique equilibrium point for

all initial state vectors when u 2 ½0; 1Þ. They also explored

the case of u ¼ 1 based on the symmetry and diagonaliz-

ability of the derived W. In more detail, using the appro-

priate matrix properties, the authors equated the reasoning

rule with the power iteration method formula and con-

cluded that for a diagonalizable weight matrix W with

eigenvalues jk1j � jk2j � � � � � jknj, if an initial stimulus u0
has a nonzero projection along an eigenvector associated

with k1, then uk converges to such an eigenvector as k !
1 (Mises and Pollaczek-Geiringer 1929). In particular,

when k1 is real, the method converges to a unique fixed

point. Nevertheless, because asymmetry is a distinguishing

characteristic of causation, the convergence of the FCM for

u ¼ 1 should be analyzed without relying on the diago-

nalizability of W. In the context of the power iteration

method, studies have demonstrated that even if W is not

diagonalizable, the same outcomes are achieved, albeit

with slower convergence (Leader 1991). Therefore, the

case of u ¼ 1 enables modelling scenarios in which the

FCM converges to a unique fixed-point attractor without

the need for symmetry in W.

In this paper, we utilize the reasoning rule presented in

(19) and the activation function of (18). The learning

algorithm eventually adjusts the weights of the FCM and

the controllable parameter u. However, the difference

between the proposed method and the existing methods is

that the normalized significant IF rates computed in

Training phase 1 are imposed as constraints in Training

phase 2 to avoid capturing spurious correlations. In detail,

only the weights of edges with significant estimated IF

rates are tunable parameters, while the remaining weights

are set to zero ‘‘a priori’’. This approach improves the

generalizability and interpretability of the developed FCM

while reducing the training time by reducing the dimen-

sions of the optimization problem. Therefore, a candidate

solution is encoded as a (SIFsþ 1)-dimensional vector,

where SIFs is the number of significant IF rates and

parameter u.
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x ¼ ½u;wð1Þ;wð2Þ; . . .;wðSIFsÞ�: ð20Þ

For FCM learning, which involves determining the optimal

weight values and u, we have chosen the Particle Swarm

Optimization (PSO) metaheuristic algorithm due to its

effectiveness in the literature (Papageorgiou et al. 2005;

Bas et al. 2022). PSO starts with a random population of

candidate solutions called particles. Through iterations, the

particles are evaluated using a defined cost function and

updated accordingly. The process continues until a satis-

factory solution is found or a stopping criterion is met, such

as the maximum number of function evaluations. The cost

function used in this study is defined as follows:

EðxÞ ¼ a1GðxÞ þ a2HðxÞ; ð21Þ

where x represents a candidate solution, 0	Gð�Þ 	 1

denotes the FCM’s mean absolute prediction error (22),

and 0	Hð�Þ 	 1 denotes the accumulated dissimilarity

between two consecutive FCM state vectors (23). The

parameters a1; a2 2 ½0; 1� indicate the relevance of the

FCM’s prediction accuracy versus stability, for which

a1 þ a2 ¼ 1, ensuring that the cost function is always

bounded in the interval [0, 1].

GðxÞ ¼ 1

K

XK

k¼1

Yk � A
ðlÞ
n;k

���
��� ð22Þ

HðxÞ ¼
XK

k¼1

Xn

i¼1

Xl

t¼1

2xtðAðtÞ
ik � A

ðt�1Þ
ik Þ2

K n ðT � 1Þ ð23Þ

In (22) and (23), K represents the number of training

observations, n is the number of FCM concepts, Yk is the

expected value of the output concept in k-th data obser-

vation, and xt ¼ t
T is the importance of the t-th iteration in

the reasoning process, which increases linearly with the

number of iterations. The rationale behind xt is that the

learning algorithm should focus primarily on stabilizing the

last iterations, allowing greater flexibility at the beginning

(Nápoles et al. 2016).

3.4 Interpretation of FCM’s predictions

The proposed FCM can explain its predictions, supporting

two levels of interpretability: (a) global and (b) local. At

the global level, IF-FCM provides a holistic view of the

influence of each input variable in the decision-making

process, whereas, at the local level, it provides numeric

explanations for individual predictions by calculating the

importance of each input feature to this particular decision.

The ability to find the features that play a critical role in

classifying a sample as an anomaly enables root cause

analysis (Brito et al. 2022).

3.4.1 Global interpretability

The relevant literature demonstrates several methods for

examining the overall contribution of each feature to the

decision-making process of an FCM. The most widespread

method is based on graph theory and states that the con-

cept’s importance can be measured via its degree of cen-

trality (Kosko 1986):

CENðCiÞ ¼ inðCiÞ þ outðCiÞ; ð24Þ

where inðCiÞ and outðCiÞ refer to the number of incoming

and outcoming edges of each concept Ci, respectively. The

most significant feature of the FCM is the one whose sum

of the concepts acting on it and those affected by it is the

largest.

3.4.2 Local interpretability

To explain the decision for a given data instance, FCMs

provide a dynamic, semi-quantitative method that analyzes

the propagation of effects from one concept to another

using a plot of the activation values of all concepts across

iterations (Barbrook-Johnson and Penn 2022). The final

activation values of the input concepts after FCM stabi-

lization reflect their contribution to the prediction, with

concepts with larger absolute values interpreted as more

important or influenced/influential (Soler et al. 2012; Liu

et al. 2020). Furthermore, this plot enables the investiga-

tion of how relative changes in the initial concept values

impact the reasoning process, providing insights into

whether changes accelerate, stabilize, or diminish over

time.

4 Experimental results

In this section, we present the results of numerical simu-

lations designed to assess the efficacy of the proposed

methodology. First, we provide a detailed description of

the dataset used in the simulation. Next, we outline the

application of the proposed methodology to the dataset.

Finally, we compared our model with state-of-the-art

FCM-based models in terms of their prediction accuracy,

interpretability, and aggregate power.

4.1 Dataset description

One of the standard datasets used in industrial process

anomaly detection is Matzka’s PMAI4I dataset, which we

adopted in our experimental evaluation (Matzka 2020).

This synthetic yet realistic dataset represents industrial

predictive maintenance data, and has been widely recog-

nized and accepted as a reliable benchmark for evaluating
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various XAI methods (Ghasemkhani et al. 2023; Mylonas

et al. 2023). It contains 10,000 samples covering a diverse

range of variables to provide a holistic view of the indus-

trial data. These variables include one categorical variable

(product quality 2 {‘‘low’’, ‘‘medium’’, ‘‘high’’}), five

numerical variables (air temperature, process temperature,

rotational speed, torque and tool wear) and a binary target

variable indicating the machine failure (‘‘0’’ = Healthy,

‘‘1’’ =Faulty. For each sample, apart from the fault, its type

is known to be one of the following:

1. Tool wear failure (TWF): the tool fails at a random

tool wear time between 200 and 240 min.

2. Heat dissipation failure (HDF): if the difference

between the air and the process temperature is less than

8.6 K while the tool’s rotational speed is less than 1380

rpm, a failure is caused.

3. Power failure (PWF): if the required power (i.e., the

product of torque and rotational speed in rad/s) is less

than 3500 W or greater than 9000 W, the system fails.

4. Overstrain failure (OSF): the process fails by over-

strain when the product of tool wear and torque

exceeds 11.000 minNm for low quality (L) products,

12.000 for medium quality (M), and 13.000 for high

quality (H), respectively.

5. Random failures (RNF): regardless of process param-

eter values, there is a 0.1% probability of failure.

If any of the mentioned failure modes is present, the pro-

cess fails, and the machine failure value is set to one.

However, during training, the FCM receives only the input

variable values and system condition information without

knowing the root cause of the fault. Hence, the FCM-based

classifier aims to achieve two objectives: first, detecting the

presence of anomalies in the analyzed manufacturing sys-

tem, and second, identifying the most significant input

variable(s) for each true positive prediction, which are

likely to be responsible for the fault. This is accomplished

by leveraging the inherent interpretability characteristics of

the FCM.

4.2 Simulations execution

Following the methodology described in Sect. 3, the data

are first pre-processed. This includes encoding categorical

features, such as product quality, where each category

value is assigned an integer (e.g., ‘‘low’’ is represented as

0, ‘‘medium’’ as 1, and ‘‘high’’ as 2). In addition, because

the dataset is imbalanced, an SMOTE-based algorithm is

used to address this issue, generating artificial instances of

the minority class ‘‘1’’ (Sridhar and Sanagavarapu 2021).

In particular, this study applies the hybrid algorithm

SMOTE-ENN, which merges undersampling and over-

sampling using Edited Nearest Neighbors and SMOTE,

respectively. This combination strengthens the bias

towards the minority class while weakening it towards the

majority class, resulting in improved overall performance

compared to using these techniques individually. Finally,

data fuzzification is performed to prepare the data for

training and decision-making.

4.2.1 Training phase 1

By applying Algorithm 1 to the dataset and subsequently

normalizing the significant IF rates, we obtain the results

presented in Table 2. These findings align with the dataset

description since:

1. The product quality influences the wear time of the

tool, leading to the occurrence of TWF and OSF.

2. The process temperature at each time step is derived

from the air temperature samples, indicating a causal

relationship between these variables.

3. Both air temperature and process temperature con-

tribute to the emergence of HDF in the system,

establishing an information flow from these variables

to the target variable.

Nonetheless, beyond the obvious links, the algorithm

discovered that:

1. Rotational speed and torque do not directly affect

machine failure but indirectly through tool wear.

2. Air temperature has a causal influence on tool wear.

3. There exists a feedback loop from machine failure to

tool wear.

4.2.2 Training phase 2

As mentioned previously, during Training phase 2, the

weights of all FCM edges with insignificant IF rates were

set to zero before starting PSO execution. According to

Table 2, the final number of tunable weights is nine along

with the reasoning rule parameter u. For the PSO

Table 2 Significant IF Rates In The PMAI4I

X1 X2 X3 X4 X5 X6 X7

X1 0 0 0 0 0 25.59e24 0

X2 0 0 0.3512 0 0 2.1e23 1.2e22

X3 0 0 0 0 0 0 23.8e23

X4 0 0 0 0 0 7.55e25 0

X5 0 0 0 0 0 21.5e23 0

X6 0 0 0 0 0 0 0.7e22

X7 0 0 0 0 0 28.13e22 0
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parameter initialization, a population size of 100 was

chosen, and the cost function parameters a1 and a2 were set
to 0.8 and 0.2, respectively. Additionally, to achieve a

more accurate solution, a hybrid function was employed to

continue the optimization after the termination of the

original solver. The algorithm was implemented using

MATLAB global optimization toolbox.

4.2.3 Experimental setup

After training the IF-FCM, we compared its predictive and

explanatory power with several state-of-the-art FCM-based

models. These include FCM-A (Froelich 2017),

FCMBinaryClassifier (FCMB) (Szwed 2021), FCMMulti-

classClassifier (FCMMC) (Szwed 2021), Long-Term

Cognitive Network (LTCN) (Nápoles et al. 2022b), and a

Fuzzy Cognitive Map using the ‘‘Stability based on Sig-

moid Functions’’ method (FCM-SSF) (Nápoles et al.

2017). Furthermore, to emphasize the significance of L-K

IF analysis in enhancing FCM performance, we developed

two additional models that utilize (18) and (19) for deci-

sion-making while being trained through PSO. However,

their Training phase 1 varies. In the first model, called

correlation coefficient-based FCM (CCFCM), the weights

correspond to the correlation coefficients between variables

with a p value less than 0.05. In the second model (FCM-

FC), all weights are included without performing initial

data analysis to determine the relationships between

concepts.

To avoid possible issues such as overfitting and ensure

the generalizability of the models, stratified 10-fold cross-

validation was used for the simulations. Simultaneously,

hyper-parameter tuning was conducted to optimize the

performance of each model, considering the variables

displayed in Table 3. As for FCM-SSF, 91 maps were

randomly generated, varying in network densities from

10% to 100%, and the model delivering the best perfor-

mance was selected.

4.2.4 IF-FCM’s predictive power

Table 4 displays the average prediction accuracy, the

‘‘Area under the ROC Curve’’ (AUC) score, and the

Cohen’s kappa coefficient for each model across all folds.

According to the results, the LTCN, FCMB, and FCMMC

exhibit the highest performance among the cognitive net-

works, followed by FCM-FC and IF-FCM. In contrast,

FCM-A demonstrates the lowest performance. The poor

Table 3 List of Hyper-parameters for model tuning

Model Hyper-parameters

FCM-Ad g = 0 to 10

FCMBb Activation: sigmoid

Activation_m: 1

Depth: 2, 3, 5

Epochs: 50, 100

Batch size: 16, 256, 4096, –1

Buffer_size: 1000

Training_loss:logloss

Optimizer: rmsprop

Learning_rate: 0.001, 0.01, 0.05, 0.1, 0.5

FCMMCb Activation: sigmoid

Activation_m: 1

Depth: 2, 3, 5

Epochs: 50, 100

Batch_size: 16, 256, 4096, -1

Buffer_size: 1000

Training_loss: softmax

Optimizer: rmsprop

Learning_rate: 0.001, 0.01, 0.05, 0.1, 0.5

LTCNa Method: inverse

Transfer function: sigmoid, tanh

Phi: 0.5 to 1.0

T: 5, 10, 15

Alpha: 0, 0.01, 100

FCM-SSFc Density: 10% to 100%

Slope parameter of the sigmoid: –1 to 10

Offset parameter of the sigmoid: –1 to 1

a Nápoles et al. (2022b)

b Szwed (2021)
c Nápoles et al. (2017)

d Froelich (2017)

Table 4 Average Accuracy, AUC, and Kappa coefficient For each

FCM-based model

Model Accuracy AUC Kappa

LTCNa 0.95168 0.95061 0.90295

FCMBb 0.94159 0.94357 0.88412

FCMMCb 0.93464 0.93432 0.86426

FCM-FC 0.85080 0.88231 0.70238

IF-FCMe 0.82235 0.85465 0.64600

FCM-SSFc 0.81956 N/A 0.63907

CCFCM 0.81029 0.81434 0.62009

FCM-Ad 0.68311 0.86089 0.35364

a Nápoles et al. (2022b)

b Szwed (2021)
c Nápoles et al. (2017)

d Froelich (2017)
e Proposed model
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performance of FCM-A can be attributed to the algorithm

proposed by Froelich (2017), where the loop for computing

the classification error of each candidate threshold focuses

only on minimizing false negatives, rather than achieving

an optimal balance between false negatives and false pos-

itives. This issue also explains the discrepancy between its

accuracy and AUC score. Since AUC is threshold-invariant

and provides an aggregate performance measure across all

possible decision thresholds, a combination of low accu-

racy and high AUC suggests that the selected decision

threshold is not optimal.

The FCM-SSF model is based on the CpO architecture.

As mentioned in Sect. 3.2, this architecture selects the OC

with the highest activation value in the final iteration to

make its decision. This mechanism inherently lacks a

decision threshold, which is a pivotal component in com-

puting the AUC score. Specifically, the AUC score is a

performance metric that evaluates the ability of a model to

discriminate between the positive and negative classes. The

ROC Curve is constructed by plotting the True Positive

Rate (sensitivity) against the False Positive Rate (1-speci-

ficity) at various decision threshold levels, typically rang-

ing from 0 to 1. Different points on the ROC Curve are

obtained by varying this threshold, and the AUC score is

the area under this curve. The essence of the AUC score

lies in its ability to assess the model’s performance across

all possible thresholds. Therefore, given that the CpO

architecture of the FCM-SSF does not utilize a decision

threshold, it becomes inherently incompatible with the

ROC Curve. Without the ability to vary the decision

threshold, generating the ROC Curve and computing the

AUC score by extension is impossible. Therefore, in

Table 4, we employed the symbol ‘‘N/A’’ (not applicable,

not available) to indicate that the AUC score is not appli-

cable or computable for the FCM-SSF model.

4.2.5 IF-FCM’s explanatory power

Regarding interpretability, IF-FCM calculates the global

feature importance using (24). Based on the causal struc-

ture presented in Table 2, tool wear is the most important

feature with six incoming and outgoing edges, air and

process temperature follow with three and two edges,

respectively, while the rest have only one outgoing edge.

To validate this finding, the LOFO (Leave-One-Feature-

Out) method was employed, which is an XAI technique

that iteratively removes each feature, retrains the model,

and compares the resulting model error to a baseline model

consisting of all features. This analysis assesses the mean

feature importance value and standard deviation (Erdem

2023). LOFO was chosen due to its ability to handle cor-

related features, unlike linear models, and its robust gen-

eralization as it calculates feature importance across cross-

validation splits. LOFO analysis was conducted for various

black box machine learning (ML) models, such as Light

Gradient-Boosting Machine (LightGBM), K-Nearest

Neighbour (KNN), Decision Tree (DT), Multilayer Per-

ceptron (MLP) classifier, Gaussian Naı̈ve Bayes (NB),

Stochastic Gradient Descent (SGD), Support Vector

Machine (SVM), and eXtreme Gradient Boosting (XGB).

In addition, an intrinsic interpretable Logistic Regression

(LR) model was developed, where the feature coefficients

provided insights into feature importance. The results

presented in Fig. 2 indicate that tool wear was identified as

the most impactful feature by seven out of the nine ML

models, six models ranked torque as the second most

influential feature, and so on. However, variations were

observed among the models. For instance, XGB considered

process temperature as the most significant feature and tool

wear as the second, while LR highlighted torque as the

most impactful, followed by air temperature and tool wear.

These discrepancies underscore the potential differences in

global interpretability across models, aligning with findings

from previous studies (Li et al. 2022).

Regarding the examined FCM-based models, the rank-

ings of the input features’ importance varied. In the LTCN

model, the importance rankings of the input features were

as follows: (1) torque, (2) tool wear, (3) rotational speed,

(4) product quality, (5) process temperature, and (6) air

temperature. Similarly, in FCM-SSF, product quality and

tool wear were considered the most important features,

each with three edges. Torque followed with two edges,

while all other variables had only one edge. In contrast, the

CCFCM assigned the highest importance to air temperature

and rotational speed, with six edges each. Torque and

Fig. 2 The input features ranking based on their global importance for

the examined ML models
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process temperature had four edges each, while product

quality and tool wear had only two edges. However, the

FCM-A model, which is based on SO architecture, does not

represent the actual causal relationships and cannot cal-

culate the degree of centrality for each concept. In this

model, input concepts are connected only to the OC

without feedback (Froelich 2017, Fig. 1). A similar issue

arises in FCMB, FCMMC, and FCM-FC models, where the

fully connected map structure suggests the presence of

spurious correlations and does not allow for the calculation

of each concept’s centrality, as all concepts have the same

number of edges. Determining the global feature impor-

tance of the PMAI4I dataset has also been a concern for

other researchers. In particular, in the study conducted by

Sridhar and Sanagavarapu (2021), the authors reached the

conclusion that tool wear had the greatest effect, followed

by torque and rotational speed, thereby providing addi-

tional assurance for the accuracy of the results.

The assessment of local interpretability was conducted

by computing the success rate of the local explanations

provided by IF-FCM for each failure mode. This rate

indicates the percentage of correctly predicted anomalous

data instances specific to each failure mode, in which the

model effectively highlights the appropriate input features

as the most important. This success rate serves as a mea-

sure of the model’s accuracy, consistency, and coherence

in attributing the correct input features to the detected fault.

A higher success rate suggests an increased number of data

observations, where the model precisely identifies the

actual causal parameters of the failure, thus providing a

measure of the correctness of the generated explanations.

For instance, as shown in Fig. 3, the model should identify

tool wear as the most significant input variable for a

detected TWF. Conversely, in the event of a PWF, the

model should underscore either the torque or the rotational

speed.

Table 5 presents both the average success rate for each

failure mode and the overall average success rate across all

four types of faults. As can be observed, the proposed

model possesses the highest degree of interpretability with

a success rate of 87.49%, outperforming all other FCM-

based models. FCM-SSF is the second most inter-

pretable FCM-based model, with an 83.55% success rate,

whereas FCM-FC has a success rate of 76.68%. Among the

other models, LTCN, FCMMC, CCFCM, and FCMB fol-

low, the results of which (74.27%, 58.12%, 50.49%, and

38.74%, respectively) suggest that they provide confusing

explanations for the modelled system. The issues with

FCMMC and FCMB are twofold: (a) the class label is

extracted after a predetermined number of iterations (i.e.,

hyper-parameter depth) without the models being stabi-

lized, and (b) the fully connected structure results in the

unintentional absorption of spurious correlations. More-

over, the fully connected structure problem plagues FCM-

FC, leading to poor interpretability. Regarding the

CCFCM, the correlation coefficient is unreliable because

its value is significant in the case of spurious correlations,

even if the two variables are not causally related. Finally,

due to the capture of spurious correlations, 1-step reason-

ing, the employed reasoning rule, and the sigmoid activa-

tion function, FCM-A cannot interpret individual

predictions, making it an inappropriate model. Notably, the

simulation results revealed that all input concepts had an

activation value of 0.5 in the final iteration. This uniformity

implies that the influence of individual input concepts on

the model’s prediction for a specific data instance remains

indeterminate. Consequently, neither the average success

rate for each failure mode nor the overall success rate

across all four fault types could be calculated. To represent

this lack of local interpretability in Table 5, the symbol

‘‘N/A’’ (not applicable, not available) was used for the

FCM-A metrics.

Figure 4 summarizes the performance analysis results,

visually representing the interpretability and accuracy of

each model. The primary goal is to evaluate the trade-off

Fig. 3 Important input features for each failure mode
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between accuracy and interpretability, along with the

aggregate predictive and explanatory power of the models.

The trade-off is measured as the absolute difference

between the average accuracy and the average success rate

score, while the aggregate power is quantified as their

combined sum. In the scatter plot, the diagonal line x ¼ y

represents the optimal trade-off, and the model positioned

closer to the upper-right corner demonstrates the highest

aggregate power. According to Fig. 4, IF-FCM has the

maximum overall power (1.69723), surpassing all the other

FCM-based models, whereas it has the second-best trade-

off (0.05253), following FCM-SSF (0.01590). LTCN has

the second-best aggregate power (1.69441); however, there

is an imbalance between its prediction and interpretation

scores (0.20895). Among the considered models, excluding

FCM-A because of its lack of interpretability, CCFCM

exhibited the poorest overall performance (1.31517).

Based on the conducted experiments and comparisons, it

can be concluded that IF-FCM is a reliable predictor of

machine failures. The model’s enhanced explanatory

power can be attributed to its ability to capture authentic

causal relationships among problem variables. The global

interpretability results of IF-FCM align with those of the

examined models and previous research works. However, it

is important to note that different models emphasize dif-

ferent features. In terms of local interpretability, IF-FCM

outperformed the other models, providing more coherent

explanations. Overall, the method’s capability to rule out

spurious correlations enhances the overall power of FCM,

establishing it as a robust and interpretable model.

5 Conclusions

In this paper, a novel approach is presented for constructing

FCMs using Liang-Kleeman Information Flow (L-K IF)

analysis, an effective tool for causal inference. The moti-

vation for this study stems from the pressing challenge of

spurious correlations present in previous expert-based and

data-driven FCM construction approaches. Our primary

contribution is the formulation of a strategy that effectively

mitigates spurious correlations, thereby enhancing the

aggregate predictive and explanatory capabilities of FCM.

By integrating L-K IF analysis into FCMs, we introduced

an automated causal search algorithm that reliably

Table 5 Success rate of local explanations for each FCM-based model

Model TWF HDF PWF OSF Average Success

IF-FCMe 0.98333 0.97841 0.5835 0.95422 0.87488

FCM-SSFc 0.59853 0.79313 1 0.95027 0.83546

FCM-FC 0.38382 0.92430 0.86459 0.96661 0.76681

LTCNa 0.31353 1 0.83241 0.82306 0.74273

FCMMCb 0.24391 0.41835 0.68756 0.86153 0.58120

CCFCM 0 1 0.56574 0.45380 0.50488

FCMBb 0.21682 0.79908 0.15910 0.39627 0.38740

FCM-Ad N/A N/A N/A N/A N/A

a Nápoles et al. (2022b)

b Szwed (2021)
c Nápoles et al. (2017)

d Froelich (2017)
e Proposed model

Fig. 4 Accuracy-interpretability trade-off and aggregate power for

each FCM-based model. aProposed Model, bNápoles et al. (2022b),
cNápoles et al. (2017), dSzwed (2021), eFroelich (2017)
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identifies authentic causal relationships from the data.

These identified relationships subsequently served as con-

straints in the FCM learning process. To validate our

approach, we applied it to a synthetic dataset tailored for

industrial anomaly detection and root cause analysis as a

proof-of-concept, resulting in improved performance of the

developed FCM compared to other FCM-based models.

While we acknowledge the potential value of incorporating

additional datasets, our focus on a single dataset effectively

highlights the unique contributions, innovations, and

advantages of our method within a specific context, thus

paving the way for future studies to explore its generaliz-

ability across multiple datasets. Moving forward, we plan

to extend this study to real-world industrial data experi-

ments, while investigating the challenges associated with

metaheuristic learning algorithms.
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