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A Novel Framework for Enhanced Interpretability
in Fuzzy Cognitive Maps

Marios Tyrovolas, Student Member, IEEE, X. San Liang,
and Chrysostomos Stylios, Senior Member, IEEE

Abstract—A Fuzzy Cognitive Map (FCM) is a graph-based tool
for knowledge representation that intends to model any complex
system through an interactive structure of nodes interacting
with each other through causal relationships. Owing to their
flexibility and inherent interpretability, FCMs have been used in
various modeling and prediction tasks, particularly in situations
where humans make final decisions, such as industrial anomaly
detection. However, FCMs can unintentionally absorb spurious
correlations presented in collected data during development,
leading to poor prediction accuracy and interpretability. To
address this limitation, this article proposes a novel framework
for constructing FCMs based on the Liang-Kleeman Information
Flow (L-K IF) analysis, a causal inference tool. The actual
causal relationships are identified from the data using an au-
tomatic causal search algorithm, and these are then imposed
as constraints in the FCM learning procedure to rule out
spurious correlations and improve the predictive and explanatory
power of the model. Numerical simulations were conducted by
comparing the proposed approach with state-of-the-art FCM-
based models, thereby demonstrating the promising performance
of the developed FCM.

Index Terms—Fuzzy Congnitive Maps, explainable AI, quan-
titative causality, Information Flow, Industry 4.0

I. INTRODUCTION

AS the Industry 4.0 (I4.0) era approaches, factories come
closer to advanced technologies, such as Artificial In-

telligence (AI) and Industrial Internet of Things (IIoT), to
significantly enhance their performance through innovative
methods [1]. For instance, through real-time data collec-
tion and processing, manufacturers can monitor the system
condition, detect possible anomalies, and promptly inform
supervisors to take action before the anomalies become severe
and lead to production downtime. Several AI solutions, such as
Support Vector Machines and Artificial Neural Networks, have
been presented, demonstrating great accuracy in predicting
production line malfunctions [2]. However, their black-box
nature makes their outcome explanation challenging, which
leads to supervisors’ reduced trust in the AI models and,
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thus, hinders their deployment in critical applications where
humans make the final judgment, for example, industrial
anomaly detection [3]. Moreover, the lack of transparency and
interpretability prevents the identification of the weaknesses of
the employed AI algorithms through their explanations and,
eventually, their improvement. Therefore, it is necessary to
create AI models with more interpretable behavior, whose
explanations can contribute to finding the root cause of a
decision, helping humans respond appropriately [4].

Recently, a new research direction called eXplainable Ar-
tificial Intelligence (XAI) has emerged that deals with devel-
oping techniques, algorithms, and tools that produce human-
comprehensible explanations of the decisions of AI-based
systems [5]. Specifically, depending on the application, dif-
ferent explanation methods can be employed from an XAI
system, such as the detection of important pixels for image
classification or IF-THEN rules that express input-output data
relationships [6], [7]. Therefore, transitioning from AI to XAI
is imperative to successfully integrate automated decision-
making into production systems, where humans make super-
vision and final decisions.

A. State-of-the-Art & Motivation

Over the last few years, the research community has pro-
posed two distinct categories of XAI methodologies based on
how they are implemented, named:

• Post hoc techniques: Techniques that build a second
interpretable surrogate model, i.e., explainer, to approxi-
mate the underlying model and explain its predictions.

• Intrinsic interpretable models: Models that can explain
their predictions by themselves.

Because post hoc techniques are adapted to the underlying
model, they may not accurately imitate it, leading to incorrect
interpretations [8]. Furthermore, even if the approximation
from the explainer is good, the interpretations will be erro-
neous if the underlying model misunderstands the relationships
among the training data [9]. Finally, another disadvantage
is that the explanations of these techniques can be easily
controlled to be acceptable through specific frameworks, even
if the base model is highly biased [10]. Thus, academics have
turned to intrinsic interpretable models, whose decisions can
be explained without additional techniques, and are able to
represent assimilated knowledge in a manner consistent with
human thought [11].

A widely used intrinsic interpretable tool for knowledge
representation is Fuzzy Cognitive Maps (FCMs), a type of
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recurrent neural network typically incorporating fuzzy logic
features during its development, which can model com-
plex systems, such as industrial systems [12]. Specifically,
FCMs are directed graphs consisting of nodes called concepts
that represent the components of the modelled system and
weighted edges that describe the causal relations between
them. The advantages of FCMs are threefold:

1) Their ability to use experts’ assessments when the col-
lected data are insufficient,

2) Their intrinsic explainability, as concepts and weights
have well-defined meanings for the system under analysis
and the transparent inference process.

3) The experts’ capacity to modify the FCM’s weights to
encode rules that have not yet been observed in data (e.g.,
a new type of fault in the manufacturing system), a level
of flexibility that cannot be achieved in other intrinsic
interpretable models.

Considering the above, FCMs have piqued the interest of
researchers and proved extremely useful in different domains.
For instance, in the industry context, the authors of [13]
proposed an FCM-based model for fault diagnosis in a tank-
pipeline system that successfully identified various simulated
faults, whereas the authors of [14] presented an FCM-based
supervisor of manufacturing systems for failure detection and
decision analysis. Lastly, [15] proposed FCMs as a health
indicator prognostic method for engines’ remaining useful
life in the context of predictive maintenance. Nevertheless,
it should be mentioned that even if the literature frequently
mentions FCMs’ interpretable nature, it mainly rests on the
fact that their concepts and weights have a clear meaning
without demonstrating their explanatory performance. There-
fore, thorough numerical simulations should be performed to
determine the capabilities of FCMs to explain their decisions.

To evaluate the performance of FCMs in terms of inter-
pretability, it is important to describe how they can be devel-
oped. Currently, two fundamental FCM construction methods
have been proposed in the literature: a) expert-based and
b) data-driven [16]. In the first method, FCM concepts and
weights are determined only by the knowledge of domain
experts, which is incorporated into the model using fuzzy logic
theory [17]. However, as the developed model depends on their
expertise level, its performance may not be satisfactory as they
may overlook essential aspects of the problem and assign inap-
propriate weight values [16]. In contrast, in the data-driven ap-
proach, FCM parameters are defined using learning algorithms
[18]. Specifically, during FCM learning, either the presence
of all weights is assumed, leading to an over-parameterized
model, or they are calculated using the correlation coefficients
between the variables [19], [20]. Nevertheless, the dataset may
contain spurious correlations that are unintentionally absorbed
from the FCM and bias its learning, leading to poor prediction
accuracy and interpretability [21], [22]. Incorrect explanations
are an important issue for successfully implementing FCMs
for industrial anomaly detection, as the model directs plant
supervisors to the wrong parts of the manufacturing system
where the root cause of the fault cannot be found. Thus,
developing a new method that identifies the authentic causal

relations between problem variables and rules out possible
spurious correlations, is considered essential [23]. In this
direction, the authors in [24] presented a method for removing
spurious correlations by calculating the concepts’ behavioral
similarity through data, and applying a set of defined rules
from domain experts to discern the actual causal relationships.
However, through this approach, an FCM can still contain
spurious correlations that experts consider acceptable, while
some actual causal associations can remain undetected as they
can be beyond experts’ knowledge. Finally, this expert-driven
causality analysis is unfeasible for highly complex systems
with many variables.

One solution to these limitations is to develop a method
that identifies the real causal structure of an FCM from
observational data, without requiring domain experts. In this
way, a) the injection of spuriousness into these cognitive
networks can be avoided, thus improving their prediction ac-
curacy and interpretability, and b) large-scale problems can be
efficiently encountered. To the best of the authors’ knowledge,
no data-driven causal discovery method has been proposed for
constructing robust and interpretable FCMs.

B. Contribution

In this paper, a novel approach for FCM construction is
introduced based on the causal inference tool Liang–Kleeman
Information Flow (L-K IF) analysis. In more detail, in con-
trast to [24], the proposed technique does not require expert
involvement because it identifies the actual causal relationships
from the data using an automatic causal search algorithm.
Finally, the derived causal links are imposed as constraints
in the FCM learning procedure, aiming to rule out spurious
correlations and thus improve the FCM’s aggregate predic-
tive and explanatory power. The capabilities of the proposed
method are demonstrated in the context of developing an XAI
model for anomaly detection and root cause analysis in an
industrial system. Finally, a comparative analysis is conducted
between the developed FCM and state-of-the-art FCM-based
models in terms of their predictive and explanatory power.
It should be highlighted that, even if the examined case study
concerns anomaly detection, the proposed method can be used
effectively in other prediction problems.

The rest of the paper is organized as follows. Section II
presents the foundations of the classic FCM formalism and
L-K IF analysis. Section III describes in detail the proposed
methodology, including the model’s development process and
how to predict and interpret its results. Section IV conducts ex-
tensive numerical simulations to compare the proposed model
against state-of-the-art FCM-based models. Finally, Section V
presents some concluding remarks.

II. THEORETICAL BACKGROUND

This section first presents some basic notions of FCMs
regarding their structure and how they perform the simulations.
Second, it describes the causal inference tool L-K IF analysis,
used to determine the actual causal relationships between the
analyzed system variables.
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A. Fuzzy Cognitive Maps

As mentioned in Section I-A, an FCM consists of n con-
cepts Ci , i ∈ {1, 2, . . . , n}, and weights wij ∈ [−1, 1] that
indicate the causal relation from Ci to Cj . In general, there
are three kinds of causality:

• positive causality (wij > 0): the affected variable (Cj)
changes (increases or decreases) in the same direction as
its cause variable (Ci) changes.

• negative causality (wij < 0): the affected variable (Cj)
changes in the opposite direction to its cause variable (Ci)
change.

• zero causality (wij = 0): there is no relation between
the cause (Ci) and the affected (Cj) variable.

Each concept Ci has an activation value which is determined
via a reasoning rule, where the most common is

A
(t+1)
i = f(

n∑
j=1
j ̸=i

A
(t)
j wji), (1)

where t is the iteration step, A
(p)
m denotes the value of the

m-th concept at p-th iteration step, wji denotes the causal
weight from j-th concept to i-th concept, and f(·) denotes
the activation function that normalizes the concepts’ activation
values within a specified interval [12]. The most known
activation functions are bivalent, trivalent, hyperbolic tangent,
and sigmoid, where depending on which is selected, A

(p)
m

receives values within the [0, 1] or [−1, 1] intervals [25]. The
activation values of all concepts in each iteration step can be
expressed as a state vector A ∈ Rn, while the values of the
causal weights wij between each pair of concepts Ci and
Cj , compose a weight matrix W ∈ Rn×n, whose diagonal
elements are equal to zero. Therefore, (1) can be rewritten as:

A(t) = f(A(t−1)W). (2)

The activation values of the concepts in each iteration step
are calculated using (2) and an initial state vector A(0) as an
input that contains input data (e.g., sensor data), and triggers
the FCM to start an iterative reasoning process. Subsequently,
a new state vector yields at each iteration step until the
termination condition is satisfied, which can be either the
FCM’s convergence to an equilibrium point, leading to reliable
results, or the completion of a maximum number of iterations,
where the FCM exhibits cyclic or chaotic behavior [26].

B. Information Flow

As mentioned above, to develop efficient FCMs, it is impor-
tant to identify authentic causal relations between the modelled
system variables, which can be achieved through causality
analysis. In the context of causality analysis, [27] proposed
a framework for quantifying the causal relations between
dynamic system variables, in which causality is expressed as a
physical notion called Information Flow (IF). Specifically, IF
describes the contribution of one variable’s entropy per unit
of time in increasing the marginal entropy of another variable

and reflects the magnitude, kind, and direction of their cause-
effect relationship. The fundamental equations for calculating
the IF between two or more system variables are as follows.

Let be a two-dimensional (2-D) dynamic system:

dx = F (x, t)dt+B(x, t)dw, (3)

where F = (F1, F2) is the deterministic components, x =
(x1, x2) ∈ R2 is the state variables, w = (w1, w2) is a
standard 2-D Wiener process, and B = (bij) is the matrix of
perturbation amplitude [28]. For the aforementioned system,
the IF from x2 to x1 is

T2→1 = −E

(
1

ρ1

∂F1ρ1
∂x1

)
+

1

2
E

(
1

ρ1

∂2g11ρ1
∂x2

1

)
, (4)

where ρ (t;x1, x2) is the joint probability density function,
ρ1 (t;x1) =

∫
R ρdx2 is the marginal density of x1, g11 =

2∑
k=1

b21k, and E is the expectation with respect to ρ. An

important property of (4) is the satisfaction of the nil causality
principle, according to which x2 is not causal to x1 (T2→1 =
0) if the evolution of the latter is independent of the former
(neither F1 nor g11 depends on x2) [29].

As a further step, [27] established that under a linearity
assumption, the IF of two system variables can be estimated
from only two time series, say, X1 and X2, using the following
maximum-likelihood estimator of (4):

T2→1 =
C11C12C2,d1 − C2

12C1,d1

C2
11C22 − C11C2

12

, (5)

where Cij is the sample covariance between Xi and Xj ,

and Ci,dj = (Xi −Xi)(Ẋj − Ẋj) is the sample covari-
ance between Xi and the difference approximation of dXj

dt ,
which is computed using the Euler forward scheme: Ẋj,n =
(Xj,n+k −Xj,n) /(k∆t), with k ≥ 1 some integer. The IF in
the opposite direction, i.e., T1→2, is obtained by swapping in-
dices 1 and 2. Besides, writing (5) as a function of correlation
and/or correlation-like quantities gives

T2→1 =
r

1− r2
(ŕ2,d1 − r ŕ1,d1), (6)

where r = C12/
√
C11C22 is the sample correlation coefficient

between X1 and X2, and ŕi,dj = Ci,dj/
√
CiiCjj (i, j = 1, 2)

is the "correlation" between Xi and Ẋj but normalized with
the variances of Xi and Xj . According to (6), when two
variables are causally related (T2→1 ̸= 0), they are correlated
(r ̸= 0). However, the opposite does not hold. This property
helps distinguish authentic causal relationships from spurious
correlations.

Recently, (5) was generalized, resulting in a simple formula
for causality analysis among multiple variables [30]. In detail,
given a dataset of d time-series variables, the IF from X2 to
X1 is

T̂2→1 =
1

detC
·

d∑
j=1

∆2jCj,d1 ·
C12

C11
, (7)
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where Cj,d1 is the sample covariance between Xj and Ẋ1,
and ∆ij the are the cofactors of the covariance matrix C.
An algorithm for multivariate time-series causality analysis is
developed based on (7) (Algorithm 1). As observed from the
algorithm, a statistical significance test is conducted to draw
safe conclusions about the actual causal relationships for each
pair of variables, estimated by T̂i→j .

Algorithm 1: Quantitative causal inference
Input: Dataset of d time series
Output: a causal graph G = (V,E), where V and E

are the set of vertexes and edges, and IFs
along edges

initialize G such that all vertexes are isolated;
set a significance level α

1 for each (i, j) ∈ V × V do
2 compute T̂i→j by (7);
3 if T̂i→j is significant at level α then
4 add i → j to G;
5 record T̂i→j ;

6 return G, together with the IFs T̂i→j

Nevertheless, the importance of the relationship must be
assessed more than by inspecting the presence of causality
between variables. For this purpose, the normalization of the
estimated significant IF rates has been proposed with the
normalizer of T̂2→1 being

Ẑ =

∣∣∣∣∣
(̂

dH∗
1

dt

)∣∣∣∣∣+
d∑

j=2

|T̂j→1|+

∣∣∣∣∣ ̂(
dHnoise

1

dt

)∣∣∣∣∣, (8)

where (̂
dH∗

1

dt

)
=

1

detC
·

d∑
j=1

∆1jCj,d1, (9)

̂(
dHnoise

1

dt

)
=

1

2

ĝ11
C11

, (10)

and ĝ11 =
QN,1∆t

N . Finally, the normalized IF from X2 to X1

is:

τ2→1 =
T2→1

Ẑ
(11)

which lies on [−1, 1]. When |τ2→1| is 1, X2 has the greatest
causal impact on X1. Furthermore, simply swapping the
indices in the above equations yields τ1→2.

C. L-K IF Analysis on Binary Time Series

Until now, studies that employed L-K IF analysis to identify
causal relations have not focused on discrete-valued signals
that take a few values, such as binary time series. However,
real datasets, especially in the industry, usually contain binary
variables, such as the state of a proximity sensor or button.
Consequently, an experiment was conducted to ensure that the
causal inference tool successfully handled binary data types.

Let be a dataset of three time series X1, X2, and X3,
where X3 is the confounder of the other two without any
other causality, which are expressed mathematically as

X1(n+1) = 0.1+ 0.4X1(n)− 0.8X3(n) + e1(n+1) (12a)

X2(n+1) = 0.7+ 0.7X3(n)− 0.8X2(n)+ e2(n+1) (12b)

X3(n+ 1) = 0.5 + 0.5X3(n) + e3(n+ 1) (12c)

where the errors, e1 ∼ N(0, 1), e2 ∼ N(0, 1) and e3 ∼
N(0, 1) are independent. After initializing the variables with
random values and generating 10,000 samples for each, L-
K IF analysis was performed. Table Ia depicts the derived
IF rates and their respective confidence intervals at the 99%
confidence level. The results demonstrate that the only sig-
nificant IF rates are T3→1 and T3→2 as they lie within the
intervals [0.1975, 0.2091] and [0.0613, 0.0657], respectively,
which is in agreement with the actual relations. The rest of
T s take both negative and positive values; thus, they cannot
be distinguished from zero. It is noteworthy that creating
pseudorandom values can lead to slightly different results for
different series. Nevertheless, the mean is expected to converge
to the same value when an ensemble of series is examined.
Subsequently, the experiment was repeated using the binarized
time series, that is, the series discretized into 0 or 1. After
repeating the L-K IF analysis (Table Ib), it is concluded that
the proposed technique reliably captures the causal relations in
a qualitative sense, even if the time series have been binarized.

III. PROPOSED METHODOLOGY

Fig. 1 illustrates the proposed methodology, outlining the
major phases of constructing an FCM-based model and inter-
preting its predictions.

A. Data pre-processing

After collecting data from the analyzed system, for exam-
ple, a manufacturing system, appropriate data pre-processing
techniques are applied. Initially, because FCM processes only
numeric data, it is necessary to encode categorical variables,
including class attributes, in a classification problem. The
numerical representative (aj ∈ [0, 1]) for each class label
(classj) is calculated using the following formula:

aj =
j − 1

m− 1
, (13)

where j ∈ {1, . . . ,m} and m ≥ 2 the number of class labels.
In the context of FCMs, a mandatory process is the as-

signment of fuzzy values to concepts, which is called data
fuzzification. Fuzzification is practically considered a data
normalization procedure that computes the concepts’ initial
activation values for each data observation. Representative
normalization techniques are the min-max and z-score nor-
malization; however, they present some weak points, such as
out-of-bounds error when a new value is outlying and sus-
ception to outliers. In addition, concerning the min-max nor-
malization, different data separations, for example, in cross-
validation, yield different normalizations. With this in mind,
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To
variables X1 X2 X3

Fr
om

X1 \ 0.0018±
0.0027

−0.0023±
0.0085

X2 −0.0013±
0.0029

\ 0.0008±
0.0034

X3 0.2033±
0.0058

0.0635±
0.0022

\

T3→1 T3→2

(a) Raw Time Series

To
variables X1 X2 X3

Fr
om

X1 \ 0.0011±
0.0025

0.0039±
0.0054

X2 0.0019±
0.0023

\ 0.0013±
0.0022

X3 0.0918±
0.0046

0.0187±
0.0020

\

T3→1 T3→2

(b) Binarized Time Series

TABLE I: IF rates for the series generated with (12) and their respective confidence intervals (99% confidence level).

Fig. 1: Proposed Methodology Scheme

the Generalized Logistic (GL) algorithm was employed in this
study to normalize the data [31]. This algorithm makes no
assumptions about the distribution of variables but instead uses
a generalized logistic function to approximate each variable’s
corresponding cumulative density function (CDF). The main
advantage of this method is its inherent robustness against
outliers. The algorithm maps values from interval (−∞, ∞)
to interval [0, 1].

B. Information Flow-Based Fuzzy Cognitive Map (IF-FCM)

Having prepared the data, the FCM architecture that spec-
ifies the type and number of concepts must be defined. In
the context of classification, the literature presents two main

FCM architectures, whose difference lies in the number of
output concepts (OCs), but also in the way of dealing with
the prediction of the class label for each data instance. In the
first class-per-output architecture (CpO), each class label is
mapped to a different OC with m total outputs, and the OC
with the highest activation value in the last iteration of the
reasoning process indicates the predicted class. In contrast,
in the second architecture, called single-output architecture
(SO), the class attribute is mapped to a single OC Cn whose
predicted activation value should be assigned to one of the
class labels [32]. To achieve this, the activation interval ([0, 1]
or [−1, 1]) is divided into partitions, each corresponding to
a class label. More specifically, the prediction process in an
FCM-SO is as follows:
Step 1: Consider the k-th data observation in the dataset as

the initial state vector

A
(0)
k = [A

(0)
1k , A

(0)
2k , . . . , A

(0)
nk = 0], (14)

where A
(0)
ik ∈ [0, 1], i ∈ {1, 2, . . . , n − 1} are the initial

activation values of the input concepts, and A
(0)
nk the initial

activation value of the OC
Step 2: Applying the employed reasoning rule recurrently,

calculate the state vector

A
(l)
k = [A

(l)
1k , A

(l)
2k , . . . , A

(l)
nk], (15)

in the steady state l, whereas |A(l)
ik − A

(l−1)
ik | < ε, with

ε being a small positive number (usually 10−5), and
i ∈ {1, 2, . . . , n}. The maximum number of iterations is
denoted by T and defined by the user. A(l)

nk is the activation
value of the OC in the last iteration.

Step 3: Once the reasoning process is complete, assign A
(l)
nk

to one of the numerical representatives of class labels. This
is accomplished using m−1 defined decision thresholds that
divide the activation interval into m partitions. Therefore,
depending on the range A

(l)
nk belongs, the FCM predicts

the corresponding class label. To determine the decision
thresholds, a "threshold-moving" approach is employed,
which finds the best value based on a predefined evaluation
metric. In this paper, we locate the decision threshold by
considering the maximum value of the Geometric Mean
(16), which describes the balance of classification perfor-
mance on both majority and minority classes and, therefore,
determines the ideal position of the classification hyperplane
[33].

G−mean =
√
TPR ∗ TNR (16)
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In this study, the second architecture was selected because
of its lower parameter count and computational requirements.
Additionally, a comprehensive analysis of the architectures
conducted in prior research, such as the work presented in
[34], concluded that the SO architecture outperformed the CpO
architecture on seven of the eight datasets analyzed.

C. IF-FCM Learning

After the architecture is determined, a learning procedure is
performed to adapt the FCM behavior based on the collected
data (Fig. 1). The proposed approach is divided into two
phases. In the first phase (Training phase 1), Algorithm 1
is executed to determine the causal relationships between the
dataset variables. The algorithm is computationally efficient,
even when the scales of the original variables are very differ-
ent; therefore, raw encoded data are used.

In the second phase (Training phase 2), the parameters
defining the FCM response are tuned, which are the weights
and parameters (if any) of the employed activation func-
tion and reasoning rule. Consequently, a challenging ques-
tion arises regarding the choice of the appropriate reasoning
rule and activation function. Various researchers have shown
that using (1) in conjunction with the activation functions
mentioned in Section II-A, FCM usually converges to the
same equilibrium point regardless of the initial state vector
[35]. This behavior is undesirable in forecasting tasks, such
as anomaly detection, because the model predicts only one
class label. Beyond that, through these bounded activation
functions, the saturation problem appears, where the activation
values of the concepts are placed during the iterative reasoning
process in the lower or upper boundary of the specified
interval when receiving a high negative or positive influence,
respectively, [36]. Finally, the sigmoid function deceives the
simulation results by activating unexpected concepts based on
their received influence, as it returns 0.5 when its argument is
zero [35]

Recently, to solve the issues mentioned above, a new rule
called quasi nonlinear reasoning rule was proposed, which
involves a re-scaled activation function acting as a normalizer
[37], and is mathematically expressed as

A
(t+1)
i = φf

 n∑
j=1
j ̸=i

A
(t)
j wji


︸ ︷︷ ︸

nonlinear component

+(1− φ)A
(0)
i︸ ︷︷ ︸

linear component

, (17)

where the parameter φ ∈ [0, 1] controls the nonlinearity of the
reasoning rule, and f(·) : Rn → Rn is the activation function
defined as

f(X) =

{
X

∥X∥2
, X ̸= −→

0

0, otherwise
(18)

such that ∥·∥2 denotes the Euclidean norm. Using a matrix-like
notation, (17) is rewritten as

A(t) = φf
(
A(t−1)W

)
+ (1− φ)A(0). (19)

In [36], the convergence features of the reasoning mecha-
nism were analyzed. Through a mathematical proof by con-
tradiction, they concluded that in an FCM that employs (18)
and (19), when φ ∈ [0, 1), there is no pair of different
initial stimuli leading to the same fixed-point attractor, or more
loosely, there is no unique equilibrium point for all initial state
vectors.

For φ = 1, the findings were based on the symmetry and
diagonalizability of the derived W. In more detail, using
the appropriate matrix properties, the authors equated the
reasoning rule with the power iteration method formula and
concluded that for a diagonalizable weight matrix W with
eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn|, if an initial stimulus u0

has a nonzero projection along an eigenvector associated with
λ1, then uk, as k → ∞, converges to such an eigenvector [38].
In particular, when λ1 is real, the method converges to a fixed
point. Nevertheless, because asymmetry is a distinguishing
characteristic of causation, the convergence of FCM when
φ = 1 should be analyzed without the above characteristics
of W. In the context of the power iteration method, studies
have demonstrated that even if W is not diagonalizable, the
same outcomes are achieved, albeit with a slower convergence
[39], [40]. Therefore, the case of φ = 1 enables modeling
scenarios in which FCM converges to a unique fixed-point
attractor without the necessity for symmetry in W.

In this paper, we utilize the reasoning rule presented in (19)
and the activation function of (18). The learning algorithm
eventually adjusts FCM’s weights and the controllable param-
eter φ. However, the difference between the proposed method
and existing methods is that the normalized significant IF rates
computed in Training phase 1 are imposed as constraints in
Training phase 2 to avoid capturing spurious correlations. In
detail, the weights of the edges whose estimated IF rate was
significant were the only tunable parameters, while the rest
were set to zero "a priori". Thus, in addition to improving
the generalizability and interpretability of the developed FCM,
the training time also decreases as the dimensions of the
optimization problem are reduced. Therefore, a candidate
solution is encoded as a (SIFs+1)-dimensional vector, where
SIFs is the number of significant IF rates and parameter φ.

x = [φ,w(1), w(2), . . . , w(SIFs)]. (20)

For FCM learning, that is, the optimal weight values and
φ identification, we chose the Particle Swarm Optimization
(PSO) meta-heuristic algorithm because of the effectiveness
shown in the literature [41]. Specifically, PSO defines a pop-
ulation of candidate solutions called particles and compares
them iteratively based on a cost function, which in this
particular study, is

E(x) = α1G(x) + α2H(x), (21)

where x represents a candidate solution, 0 ≤ G(·) ≤ 1
denotes the FCM’s mean absolute prediction error (22), and
0 ≤ H(·) ≤ 1 denotes the accumulated dissimilarity between
two consecutive FCM state vectors (23). The parameters
α1, α2 ∈ [0, 1] indicate the relevance of the FCM’s prediction
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accuracy versus stability, for which α1+α2 = 1, ensuring that
the cost function is always bounded in the interval [0, 1].

G(x) =
1

K

K∑
k=1

∣∣∣Yk −A
(l)
n,k

∣∣∣ (22)

H(x) =

K∑
k=1

n∑
i=1

l∑
t=1

2 ωt(A
(t)
ik −A

(t−1)
ik )2

K n (T − 1)
(23)

In (22) and (23), K represents the number of training
observations, n is the number of FCM concepts, Yk is the
expected value of the output concept in k-th data observation,
and ωt = t

T is the importance of the t-th iteration in the
reasoning process, which increases linearly with the number
of iterations. The rationale behind ωt is that the learning algo-
rithm should focus primarily on stabilizing the last iteration,
allowing greater flexibility at the beginning [42].

D. Interpretation of FCM’s Predictions

The proposed FCM can explain its predictions, supporting
two levels of interpretability: a) global and b) local. At the
global level, IF-FCM provides a holistic view of the influ-
ence of each input variable on the decision-making process,
whereas at the local level, it provides numeric explanations for
individual predictions by calculating the importance of each
input feature to this specific decision. The ability to find the
features that play a more critical role in classifying a specific
sample as an anomaly enables root cause analysis [43].

D.1 Global Interpretability

The relevant literature demonstrates several methods for
examining the overall contribution of each feature to the
decision-making process of an FCM. The most widespread
method is based on graph theory and states that the concept’s
importance can be measured via its degree of centrality [12]:

CEN(Ci) = in(Ci) + out(Ci), (24)

where in(Ci) and out(Ci) refer to the number of incoming
and outcoming edges of each concept Ci, respectively. The
most significant feature of the FCM is the one whose sum of
the concepts acting on it and those affected by it is the largest.

D.2 Local Interpretability

To explain the decision for a given data instance, FCMs
provide a dynamic, semi-quantitative method that analyzes
the propagation of effects from one concept to another using
a plot of activation values of all concepts across iterations
[44]. The final activation values of the input concepts after
FCM stabilization reflect their contribution to the prediction,
with concepts with larger absolute values interpreted as more
important or influenced/influential [45], [46]. The plot above
can also help investigate how relative changes in the initial
concept values impact the reasoning process, such as whether
a change accelerates, stabilizes, or dies away.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of numerical simula-
tions designed to assess the efficacy of the proposed method-
ology. First, we provide a detailed description of the dataset
used in the simulation. Next, we outline the application of the
proposed methodology to the dataset. Finally, we compared
our model with state-of-the-art FCM-based models in terms of
their prediction accuracy, interpretability, and aggregate power.

A. Dataset Description

We adopted Matzka’s PMAI4I dataset to perform the exper-
iments, which is a synthetic yet realistic dataset that represents
industrial predictive maintenance data [47]. It contains 10,000
samples, each one containing one categorical variable (product
quality ∈ {"low", "medium", "high"}), five numerical variables
(air temperature, process temperature, rotational speed, torque
and tool wear) and a binary target variable indicating the
machine failure ("0" = Healthy, "1" =Faulty). For each sample,
besides the fault, its type is known to be one of the following:

1) Tool wear failure (TWF): the tool fails at a random tool
wear time between 200 and 240 minutes.

2) Heat dissipation failure (HDF): if the difference be-
tween the air and the process temperature is less than 8.6
K while the tool’s rotational speed is less than 1380 rpm,
a failure is caused.

3) Power failure (PWF): if the required power (i.e., the
product of torque and rotational speed in rad/s) is less
than 3500 W or greater than 9000 W, the system fails.

4) Overstrain failure (OSF): the process fails by overstrain
when the product of tool wear and torque exceeds 11.000
minNm for low quality (L) products, 12.000 for medium
quality (M), and 13.000 for high quality (H), respectively.

5) Random failures (RNF): regardless of process parameter
values, there is a 0.1% probability of failure.

If at least one of the aforementioned failure modes is true,
the process fails and the machine failure value is set to one.
However, during training, the FCM is fed only with the values
of the input variables and system condition, without knowing
the root cause of the fault. Consequently, the purpose of
the FCM-based classifier is, on the one hand, to detect the
anomaly’s presence in the analyzed manufacturing system,
and on the other hand, to indicate the most important input
variable(s) of each true positive prediction that is likely to
be the root cause of the fault by exploiting its inherent
interpretability characteristics.

B. Simulations Execution

Following the methodology described in Section III, the data
are first pre-processed, starting from encoding the categorical
features, as in this case, the product quality, where each
category value is assigned an integer starting from zero.
Specifically, "low" corresponds to 0, "medium" to 1, and
"high" to 2. Because the dataset is imbalanced, an SMOTE-
based algorithm is used to address this issue, generating
artificial instances of the minority class "1" [48]. In particular,
this study applies the hybrid algorithm SMOTE-ENN, which
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TABLE II: SIGNIFICANT IF RATES IN THE PMAI4I

X1 X2 X3 X4 X5 X6 X7

X1 0 0 0 0 0 -5.59e-4 0
X2 0 0 0.3512 0 0 2.1e-3 1.2e-2
X3 0 0 0 0 0 0 -3.8e-3
X4 0 0 0 0 0 7.55e-5 0
X5 0 0 0 0 0 -1.5e-3 0
X6 0 0 0 0 0 0 0.7e-2
X7 0 0 0 0 0 -8.13e-2 0

merges undersampling and oversampling using Edited Near-
est Neighbors and SMOTE, respectively. This combination
strengthens the bias towards the minority class while weak-
ening it towards the majority class, leading to better overall
performance than executing one of these techniques alone.
Finally, data fuzzification was performed to prepare the data
for training and decision-making.

B.1 Training phase 1

Applying Algorithm 1 to the dataset and then normalizing
the significant IF rates yield Tab. II, whose results are consis-
tent with the dataset description since:

1) The product quality determines the wear time added to
the tool, which in turn causes the appearance of TWF
and OSF.

2) The process temperature at each time step has been
calculated using the air temperature samples, suggesting
causality between them.

3) Air and process temperature are responsible for the
appearance of HDF in the system. Therefore, information
flows from these two variables to the target variable.

Nonetheless, beyond the obvious links, the algorithm dis-
covered that:

1) Rotational speed and torque do not directly affect ma-
chine failure but indirectly through tool wear.

2) Air temperature is causal to tool wear.
3) There is feedback from machine failure to tool wear.

B.2 Training phase 2

As mentioned previously, during Training phase 2, the
weights of all FCM edges with insignificant IF rates were set
to zero before starting the PSO execution. According to Tab. II,
the final number of tunable weights is nine, plus the reasoning
rule parameter φ. For the PSO parameter initialization, the
population size is set to 100, and the cost function parameters
α1 and α2 are set to 0.8 and 0.2, respectively. Finally, a hybrid
function continues the optimization after the termination of the
original solver to obtain a more accurate solution. The algo-
rithm was implemented using MATLAB global optimization
toolbox.

B.3 Performance Analysis of IF-FCM

After training the IF-FCM, we compared its predictive and
explanatory power against state-of-the-art FCM-based models,
including FCM-A [49], FCMBinaryClassifier (FCMB) [50],
FCMMulticlassClassifier (FCMMC) [50], Long-Term Cog-
nitive Network (LTCN) [37], and a Fuzzy Cognitive Map

TABLE III: LIST OF HYPER-PARAMETERS FOR MODEL TUNING

Model Hyper-parameters
FCM-A g = 0 to 10

FCMB activation: sigmoid
activation_m: 1
depth: 2, 3, 5
epochs: 50, 100
batch size: 16, 256, 4096, -1
buffer_size: 1000
training_loss:logloss
optimizer: rmsprop
learning_rate: 0.001, 0.01, 0.05, 0.1, 0.5

FCMMC activation: sigmoid
activation_m: 1
depth: 2, 3, 5
epochs: 50, 100
batch_size: 16, 256, 4096, -1
buffer_size: 1000
training_loss: softmax
optimizer: rmsprop
learning_rate: 0.001, 0.01, 0.05, 0.1, 0.5

LTCN method: inverse
transfer function: sigmoid, tanh
phi: 0.5 to 1.0
T: 5, 10, 15
alpha: 0, 0.01, 100

FCM-SSF
density: 10% to 100%
slope parameter of the sigmoid: -1 to 10
offset parameter of the sigmoid: -1 to 1

that uses the "Stability based on Sigmoid Functions" method
(FCM-SSF) [51]. In addition, to highlight the significance
of L-K IF analysis in improving FCM performance, two
additional models were developed that employ (18) and (19)
for their decision-making while being trained through PSO;
however, their Training phase 1 differs. Specifically, in the first
model, called correlation coefficient-based FCM (CCFCM),
the weights correspond to the correlation coefficients between
variables whose p-value is less than 0.05, whereas in the
second model (FCM-FC), all weights are included without per-
forming primary data analysis to determine the relationships
between concepts.

To identify possible issues such as overfitting and to
check the generalizability of the models, stratified 10-fold
cross-validation was used for the simulations. Simultaneously,
hyper-parameter tuning was conducted to achieve the optimal
performance of each model, considering the variables dis-
played in Tab. III. For FCM-SSF, we randomly produced 91
maps with network densities varying between 10% and 100%,
and the model with the best performance was chosen.

Tab. IV demonstrates each model’s mean prediction accu-
racy, "Area under the ROC Curve" (AUC) score and Cohen’s
kappa coefficient for all folds. According to the results, the
LTCN, FCMB, and FCMMC are the three best-performing
cognitive networks on these metrics, followed by FCM-FC
and IF-FCM, whereas FCM-A performs the worst. The poor
performance of FCM-A is because in the algorithm proposed
in [49], the loop for calculating the classification error of each
candidate threshold only considers false negatives minimiza-



9

TABLE IV: MEAN ACCURACY, AUC, AND KAPPA COEFFICIENT
FOR EACH FCM-BASED MODEL

Model Accuracy AUC Kappa
LTCN 0.95168 0.95061 0.90295
FCMB 0.94159 0.94357 0.88412

FCMMC 0.93464 0.93432 0.86426
FCM-FC 0.85080 0.88231 0.70238
IF-FCM 0.82235 0.85465 0.64600

FCM-SSF 0.81956 - 0.63907
CCFCM 0.81029 0.81434 0.62009
FCM-A 0.68311 0.86089 0.35364

tion rather than the optimal balance between false negatives
and false positives. This issue can also explain the discrepancy
between the accuracy and AUC scores. Because the AUC
is classification-threshold-invariant and provides an aggregate
performance measure across all possible decision thresholds,
its value combined with poor accuracy indicates that the
chosen decision threshold is not optimal. Furthermore, the
AUC score cannot be computed in FCM-SSF because it is
based on the CpO architecture, which chooses the OC with
the highest activation value in the last iteration, while the ROC
Curve uses a decision threshold.

Regarding interpretability, the global feature importance
in IF-FCM is computed using (24). As observed from its
causal structure (Tab. II), the most important feature is tool
wear with six incoming and outcoming edges, followed by
air temperature with three edges, process temperature with 2,
and the rest with one outcoming edge. The LOFO (Leave-
One-Feature-Out) importance method, which is an XAI tech-
nique based on iterative variable removal for determining
the mean value and standard deviation of the importance of
each feature, is used to verify the results [52]. This method
was chosen because, unlike linear models, which struggle to
deliver meaningful information when dealing with correlated
features, LOFO eliminates this concern while exhibiting solid
generalization, as the feature importance is calculated across
cross-validation splits. We, therefore, performed LOFO for
various machine learning (ML) models such as Light Gradient-
Boosting Machine (LightGBM), K-Nearest Neighbour (KNN),
Decision Tree (DT), Multilayer Perceptron (MLP) classifier,
Gaussian Naïve Bayes (NB), Support Vector Machine (SVM),
and eXtreme Gradient Boosting (XGB). The results showed
that all ML models recognized tool wear as the most important
feature, except for XGB, which assessed process temperature
as the first driver in decision-making and tool wear as the
second (mean value 0.000754 and 0.000736, respectively). In
addition, Logistic Regression (LR), an intrinsic interpretable
model, was developed, whose feature coefficients indicate
that torque is the most impactful feature, followed by air
temperature and tool wear.

Regarding the examined FCM-based models, the LTCN
exported its three most critical features through its mechanism:
a) torque, b) tool wear, and c) rotational speed. In addition,
the FCM-A based on an SO architecture, where input concepts
are connected directly and only to the OC without feedback,
does not represent the actual causal relationships, implying an
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Fig. 2: The input features ranking based on their global
importance for the examined models.

inability to calculate the concept’s degree of centrality [49,
Fig. 1]. For example, product quality does not directly affect
machine failure. The same problem appears in FCMB and
FCMMC, where the fully connected map structure suggests
the existence of spurious correlations and does not allow the
calculation of each concept’s centrality, because all concepts
have the same number of edges. Summarizing the above
outcomes in Fig. 2, it is observed that the largest percentage of
models agreed on the importance of each feature. Identifying
the global feature importance of the PMAI4I dataset has also
concerned other researchers. Specifically, in [48], the authors
also concluded that tool wear had the most considerable effect,
followed by torque and rotational speed, thereby providing
additional safety for the correctness of the outcomes.

Regarding local interpretability, Tab. V presents the average
success rate of explaining the correctly predicted anomalous
data instances, that is, determining the appropriate input fea-
tures as the most important according to the type of fault
that appeared in each observation. For example, in the case
of TWF detection, the model should calculate tool wear
as the most important variable, whereas in PWF, either the
torque or rotational speed should be calculated. Furthermore,
it shows the average success rate of each failure mode. As
can be observed, the proposed model possesses the highest
degree of interpretability (87.49% success), outperforming all
the other FCM-based models. FCM-SSF is the second most
interpretable FCM-based model, with an 83.55% success rate,
whereas FCM-FC has a success rate of 76.68%. Then, the
LTCN, FCMMC, CCFCM, and FCMB follow, the results of
which (74.27%, 58.12%, 50.49%, and 38.74%, respectively)
suggest that they provide confusing explanations for the mod-
elled system. Concerning FCMMC and FCMB, the reason is
twofold: a) the class label is extracted after a predetermined
number of iterations (i.e., hyper-parameter depth) without the
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TABLE V: SUCCESS RATE OF LOCAL EXPLANATIONS FOR EACH FCM-BASED MODEL

Model TWF HDF PWF OSF Average Success
IF-FCM 0.98333 0.97841 0.5835 0.95422 0.87488

FCM-SSF 0.59853 0.79313 1 0.95027 0.83546
FCM-FC 0.38382 0.92430 0.86459 0.96661 0.76681

LTCN 0.31353 1 0.83241 0.82306 0.74273
FCMMC 0.24391 0.41835 0.68756 0.86153 0.58120
CCFCM 0 1 0.56574 0.45380 0.50488
FCMB 0.21682 0.79908 0.15910 0.39627 0.38740
FCM-A - - - - -

models being stabilized, and b) the fully connected structure
results in the unintentional absorption of spurious correlations.
Regarding the CCFCM, the correlation coefficient is unreli-
able because its value is significant in the case of spurious
correlations, even if the two variables are not causally related.
Moreover, the fully connected structure problem plagues the
FCM-FC, leading to poor interpretability. Finally, FCM-A
cannot interpret individual predictions because its topology,
which contains spurious correlations, combined with the 1-
step reasoning, the employed reasoning rule, and the sigmoid
activation function, deceives the simulation results, with the
values of all input concepts being 0.5, in the last iteration.

Finally, the performance analysis results are summarized
in Tab. VI, which shows the aggregate predictive and ex-
planatory power of the examined models and their accuracy-
interpretability trade-off. According to this, IF-FCM has the
maximum overall power, surpassing all other FCM-based
models, whereas it has the second-best trade-off following
FCM-SSF. The relevant list follows the LTCN, whose ag-
gregate power is quite close; however, there is an imbalance
between prediction and interpretation abilities. Among the
considered models, excluding FCM-A because of its lack of
interpretability, CCFCM exhibited the poorest overall perfor-
mance.

Based on the experiments and comparisons conducted, it
can be concluded that the IF-FCM is a reliable predictor of
machine failures. The model’s improved explanatory power is
attributed to its ability to capture authentic causal relationships
between problem variables. IF-FCM’s results align with most
of the examined models, and research works at the global
interpretability level; however, it is essential to note that
different models focus on different features. Regarding local
interpretability, IF-FCM outperformed the other models, pro-
viding more correct explanations. Overall, the method’s ability
to rule out spurious correlations improves FCM’s aggregate
power, making it a powerful interpretable model.

V. CONCLUSIONS

This study presents a novel approach to constructing Fuzzy
Cognitive Maps (FCMs) using Liang-Kleeman Information
Flow (L-K IF) analysis, a causal inference tool. While other
FCM-based implementations suffer from spurious correlations
between problem variables, this proposal employs an auto-
matic causal search algorithm to identify authentic causal
relations from the data, and then it imposes them as constraints
in the FCM learning procedure to rule out misleading relations.

TABLE VI: ACCURACY-INTERPRETABILITY TRADE-OFF AND
AGGREGATE POWER FOR EACH FCM-BASED MODEL

Model Trade-off Aggregate Power
IF-FCM 0.05253 1.69723
LTCN 0.20895 1.69441

FCM-SSF 0.01590 1.65502
FCM-FC 0.08399 1.61761
FCMMC 0.35344 1.51584
FCMB 0.55420 1.32899

CCFCM 0.30541 1.31517
FCM-A - -

The effectiveness of the technique was evaluated using a
realistic synthetic dataset to design an XAI model to detect
anomalies and identify the root causes of an industrial system.
The results confirm that the developed FCM has improved in-
terpretability and predictive power compared with other FCM-
based models. In the future, we plan to continue our work
in this direction and investigate the issues of metaheuristic
learning algorithms.
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