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Abstract
This study examines the dynamic causality between the carbon emission market and the clean energy market, using an 
information flow-based, quantitative Liang causality analysis which is firmly grounded on physics and derived from first 
principles. The dynamic causal relationships between European Union Allowance (EUA) prices and clean energy index allow 
us to explore whether the causality in return or in variance from  CO2 emission allowances to the clean energy index is time-
varying. The results show that the causal relationships in return and in variance between EUA and Clean Energy Index (CEI) 
are drastically time-varying. For the causality in return, a significant unidirectional long-term and stable causality from CEI 
to EUA is identified after March 2020. For that in variance, a bidirectional causality is found after March 2020, but values 
after 2020 are opposite to those in return. It seems when fluctuations in the clean energy market are low, the clean energy 
market has a weak causal effect on the carbon emission market but when volatility in the clean energy market is increasing, 
causalities between the two markets are significantly strengthened. These results obtained through this rigorous causality 
analysis can serve as a reference for academics, market participants, and policymakers to understand the underlying links 
between EUA prices and clean energy index.
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Introduction

Extreme weather caused a fire in Australia that lasted for one 
half of a year; torrential rain battered central China’s Zheng-
zhou City and killed dozens of people; and the worst drought 
in the past 67 years is ongoing in Taiwan. These disastrous 
weather and climate phenomena are frequenting our daily 
lives and incurring huge losses to the economy and human 
life around the world. Climate change has become an issue 
that needs urgent societal attention and continuing efforts 
need to be invested to provide remedial solutions, so as to 
accomplish a sustainable, low-carbon lifestyle (Hammoudeh 
et al. 2020). The global greenhouse gas (GHG) emissions 
from human activities such as burning fossil energy sources, 
deforestation, and land clearing for agriculture are recog-
nized as the most remarkable driver of the observed cli-
mate change events since the mid-twentieth century (IPCC 
(Intergovernmental Panel on Climate Change) 2013). The 
potential solution to mitigate climate change is to reduce 
expenditure and to increase revenue to reach the global cli-
mate neutrality—an economy with net-zero GHG emissions 
(Fawzy et al. 2020). The so-called reduce expenditure is 
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to cut down carbon dioxide emissions by combining eco-
nomic means with administrative means, while the so-called 
increase revenue means to vigorously develop the environ-
ment-friendly clean or renewable energy sources to alleviate 
the damage to the environment due to consumption of the 
traditional fossil energies.

Under the cap and trade principle, the European Union 
Emissions Trading System (EU ETS), as a financial instru-
ment and emission control mechanism, is significantly effec-
tive in curbing GHG emissions and beneficial to combat 
climate change (Bayer and Aklin 2020; Wen et al. 2020a, 
b). As the first and biggest  CO2 emission trading scheme 
worldwide, it has been the flagship of EU energy policy 
initiative to achieve its climate targets under the Kyoto Pro-
tocol, such as the intermediate target of at least 55% net 
reduction in GHG emissions in the EU by 2030 compared 
to 1990 and the long-term target of climate neutrality in 
the EU by 2050. This scheme results in that the energy-
consuming installations are regulated in accordance with 
the annex of 2003/87/EC Directive, making them pay for 
the consequences of their emitting activities by integrating 
a price for carbon dioxide emissions into their investment 
and operational strategies (Keppler and Mansanet-Bataller 
2010). The EU ETS facilitates the trade-in allowances, viz., 
the European Union Allowances (EUAs), within a certain 
period, between individual companies or installations. The 
emission allowance means the climate credit (or carbon 
credit), giving the holder the right to emit one ton of  CO2 
equivalent during a specified period. The total number of 
EUAs is limited under the cap and trade principle, and there-
fore can encourage companies participating in the scheme 
to trade future expected emissions to optimize compliance 
over their entire planning horizon. Furthermore, it is helpful 
for the EU to pursue ambitious emission reduction targets.

The correlation between carbon emission and energy mar-
kets has been enhanced under the EU ETS by motivating 
installations or companies to reduce consumption of tradi-
tional fossil energies and improve investment in environ-
ment-friendly clean energies. Thus, the scheme has emerged 
as one of the most important measures for reduction of GHG 
emission (Ji et al. 2018). Since its launch in 2005, there have 
been a large body of recent works that have grown exponen-
tially, highlighting the growing interest in the EUA on the 
EU ETS to encourage GHG reduction and decarbonization 
of economic actors (Hu et al. 2015; Bayer and Aklin 2020). 
Actually, by having high liquidity and analogous characteris-
tics of financial assets, EUA has become an attractive invest-
ment instrument that is capable of continuous contribution 
to the realization of a low-carbon lifestyle. European car-
bon allowance prices have languished in the single digits for 
years, but not any longer. The price for carbon allowances on 
the EU ETS has surged by 60% this year, recently crossing 
the €50-per-ton threshold for the first time. The rally marks a 

dramatic reversal from just a couple of years ago: EUA sold 
for less than €10 a ton as recently as in 2018. The higher 
prices of EUA will accelerate innovations of low-carbon 
energies that are needed for the European Union to achieve 
climate neutrality by 2050 and to impose a more important 
influence on the clean or renewable energy market. Subse-
quently, as governments around the world are accelerating 
the transition to low-carbon economies and mitigating cli-
mate change risk, clean energy market is becoming a greater 
focus for global market participants (Hammoudeh et al. 
2014; Teixidó et al. 2019; Wen et al. 2020a, b; Hanif et al. 
2021). EUA and clean energy innovations share the com-
mon goal of mitigating global warming and fighting against 
climate change by reducing GHG emission.

From a financial point of view, carbon emission and clean 
energy markets are collectively receiving close attention 
from market participants concerned about climate change 
and environment improvements. Naturally, price informa-
tion of the two markets influences each other. For these rea-
sons, investigating the underlying information transmission 
between the EUA prices and clean energy stock prices can 
provide significant reference for economic actors making 
decisions on decarbonization and clean energy develop-
ment. There have been abundant investigations of informa-
tion transmission between the two price series. These can be 
roughly classified into three categories. First, the causality 
between carbon emission market and clean energy market is 
explored by using the traditional econometric models, e.g., 
Granger causality test and its variants, vector autoregressive 
(VAR) analysis, and multiple linear regression model (Fezzi 
and Bunn 2009; Nazifi and Milunovich 2010; Kumar et al. 
2012; Zhu and Kong 2016; Dutta et al. 2018; Adams and 
Acheampong 2019; Chang et al. 2020; Hammoudeh et al. 
2020). Second, the dependence and spillovers between the 
two markets are studied according to correlation analysis 
and/or spillover index, such as dependence based on copu-
las by Gronwald et al. (2011) and Chevallier et al. (2019); 
Diebold and Yilmaz (DY) spillover index by Wang and Guo 
(2018) and Ji et al. (2018); Baruník and Křehlík (BK) spillo-
ver index by Hanif et al. (2021); BEKK model by Mansanet-
Bataller and Soriano (2009) and Chen et al. (2019); and 
DCC-Generalized AutoRegressive Conditional Heteroske-
dasticity (GARCH) model by Balcilar et al. (2016) and Gar-
gallo et al. (2021), among others. In the third category, the 
information transmission between carbon emission market 
and clean energy market is examined using transfer entropy 
(Gao et al. 2020; Hung 2021). Although mixed results have 
been reported in literature, due to the different data and 
methodologies used, the general agreement has been that 
carbon emission market and clean energy market are related, 
constituting a complex system.

Although previous empirical researches have provided 
an important reference for comprehending the information 
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transmission between markets of carbon emissions and clean 
energies, the dynamic causality between the price of EUA 
and the index of clean energy stocks remains elusive and 
has rarely been investigated using information flow analysis, 
a natural tool for understanding information transmission. 
Information flow (or information transfer as it may appear 
in the literature) is a fundamental physics concept which is 
logically associated with causality: while a causal relation 
entails a flow of information, the latter provides a measure 
of the strength of entailing causality (Liang and Kleeman 
2005; Pereda et al 2005) and has been successful in many 
applications and generalized to multivariate data and non-
linear time series causal analysis (Kyrtsou et al 2019; Li and 
Liu 2019; Liang 2019; Zhang et al 2022). Recently, causal-
ity in terms of information flow has been realized as a real 
physical notion that can be rigorously formulated from first 
principles (Liang 2008, 2016). This is in contrast to the tra-
ditional axiomatically proposed methods. Because market 
participants, who are concerned about climate change and 
environment improvements, pay close attention to the carbon 
emission market as well as the clean energy market from the 
perspective of financial investment, it is understandable that 
the information flow between the prices of the two markets is 
important for them to make reasonable investment decisions. 
It is hence intriguing to use this more sophisticated theory 
and the subsequent analysis tools to explore the causality 
between the price of EUA and the index of clean energy 
stocks. It merits mentioning that this causality analysis can 
be easily and very efficiently fulfilled with time series in 
a quantitative sense (Liang 2014, 2021). Since its advent, 
many applications have been carried out with remarkable 
success for diverse problems in different disciplines, such as 
global warming vs.  CO2 emissions, weather pattern forma-
tion, ocean eddy shedding, brain’s neural networks, financial 
markets, and so on (Liang 2015, 2016, 2019; Stips et al. 
2016; Lu et al. 2020; Tao et al. 2021).

In addition, studies in recent literature further show 
that as information transmission between stock markets 
increases, an unpredictable event in one market causes 
changes in not only return but also volatility (or variance) 
in other markets (Balcilar et al. 2021). As documented in 
Pantelidis and Pittis (2004), causality between two variables 
can be divided into two types: one is causality in return; the 
other is causality in variance. Furthermore, all causality-in-
return influences should be extracted from some parametric 
model before the causality in variance is examined. It is 
therefore tempting to employ the aforementioned rigorously 
formulated information flow and causality analysis to gain 
a reliable and deeper understanding of the fundamental 
process of information transmission, both in return and in 
variance or volatility, between EUA prices and clean energy 
index. This can provide leverage for participants in financial 
markets to construct better portfolios and hedging strategies 

and for policymakers at macro- as well as microlevel to take 
decisions about carbon emission, clean energy innovations, 
and risk management.

Also, it is worth noting that the hypothesis invoked in 
these researches with a conventional method that the causal-
ity between different financial variables is constant over a 
sample period is usually rejected (Hammoudeh et al. 2020). 
Thus, it is necessary to take into account the dynamic cau-
sality between EUA prices and clean energy index to figure 
out how the underlying information transmission between 
the two series changes over time. In this context, this paper 
aims to examine whether the causality in return and in vari-
ance from the EUA prices to the clean energy index is sig-
nificantly time-varying, or vice versa. This will be important 
for price prediction, portfolio optimization, and risk man-
agement. Methodologically, unlike previous studies in the 
literature, this study employs a novel time-varying causality 
approach with a running window algorithm developed by 
Liang (2014) based on the rigorously established informa-
tion flow (Liang 2016) to investigate whether the bidirec-
tional causalities in return and in variance between EUA 
prices and clean energy index could change over the study 
period and then exhibit a different dynamic feature.

In comparison with existing studies, the potential contri-
bution of this study is twofold. On one hand, the dynamic 
causalities in return and in variance between prices of EUAs 
and clean energy index are investigated. Specifically speak-
ing, the time-varying significant causalities in return and in 
variance are examined. Significant causal relationships are 
detected at certain intervals in the whole sample period: a 
significant unidirectional long-term and stable causality in 
return from the clean energy index to EUA prices exists after 
March 2020. But the causality in variance between the two 
shows a different scenario; there exists a sporadic causality 
in variance before February 2020, and a bidirectional stable 
causality in variance after 2020, but the sign of the causality 
is opposite to that of causality in return. (A positive/nega-
tive sign in Liang’s formalism corresponds to the excita-
tory/inhibitory mechanism of the information flow within a 
neural network. This property is not seen in the traditional 
methods.) The significant causalities in return and in vari-
ance can improve the predictive powers of the clean energy 
market on the carbon emission market, and vice versa. This 
helps market participants to better adjust their decisions and 
allocate funds to appropriate portfolios.

On the other hand, a novel time-varying causality analy-
sis with a rolling window algorithm developed by Liang 
(2014, 2016) is employed to examine the causal informa-
tion transmission between EUA prices and clean energy 
index. As mentioned above, the resulting causality is not 
only quantitative, but it can also be further differentiated 
with a positive or negative sign, which is not the case in 
the traditional methods. It hence facilitates the revealing of 
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more fundamental characteristics of the influence of carbon 
emission market on clean energy market. Our results show 
that EUA prices exhibit a negative causality in variance after 
March 2020, while the clean energy index has the opposite 
causality in return and in variance after March 2020. The 
causality between the two series is more significant as the 
increase of EUA prices and the clean energy index, which 
might imply that the turmoil in market situation strength-
ens the interaction between the carbon emission and clean 
energy markets. These results will make important refer-
ences for academics, market participants, and policymakers 
to understand the underlying linkages between EUA prices 
and clean energy index. For example, financial investors can 
use these findings to obtain better risk-adjusted returns from 
their well-diversified portfolios, and to improve the portfo-
lio performance, while policymakers could adopt effective 
measures to properly promote prices of the EUA so that 
the carbon emission allowance market can provide stimuli 
to shift from the traditional fossil resources to renewable 
energy resources.

The rest of this study is organized as follows. The “Lit-
erature review” section briefly reviews the related literature. 
The “Materials and methods” section depicts the data used 
in our empirical research and introduces the theoretical 
methods. The “Results” section presents and discusses the 
obtained results. Finally, the “Conclusion” section closes 
this study with general conclusions.

Literature review

It is widely accepted that  CO2 emission allowance prices 
are correlated with energy prices, especially clean energy 
prices, but it is not clear whether the carbon emission market 
has a significant influence on the clean energy market. The 
traditional econometric models have been extensively used 
to explore the potential causality between the two markets. 
For instance, Hammoudeh et al. (2020) examine the real-
time Granger causality between green bonds and  CO2 emis-
sion allowances, and find that  CO2 emission allowance price 
Granger causes green bond prices unidirectionally. Chang 
et al. (2020) find that the significant causalities are unidirec-
tional from the stock markets to  CO2 emission market, but 
not the other way around. Adams and Acheampong (2019) 
examine the impact of clean energy on carbon emissions 
using a multiple linear regression model and report that the 
use of clean energy reduces carbon emissions. Dutta et al. 
(2018) use the bivariate VAR-GARCH model to investigate 
the correlations of the return and volatility between  CO2 
allowances and renewable energy prices, and document that 
fluctuations in returns of EUA positively affect returns of 
clean energy stocks. Zhu and Kong (2016) analyze, using 
a VAR model, the correlation between the stock prices of 

companies related to low-carbon economy and prices of 
carbon emission allowances; they reveal a positive influ-
ence of Shenzhen carbon emission prices on prices of stocks 
of companies of low-carbon economy. Kumar et al. (2012) 
investigate the dependence between renewable energy com-
panies’ stocks and carbon markets with VAR model and find 
it insignificant. Nazifi and Milunovich (2010) explore the 
causalities between the EU carbon allowance and natural 
gas, which is often viewed as a clean energy alternative, 
using the Granger causality test, and find no long-run rela-
tionship between them. Fezzi and Bunn (2009) measure the 
structural interactions of electricity, natural gas, and carbon 
prices applying a structural, co-integrated VECM model 
and report a bidirectional interaction between natural gas 
prices and carbon emission allowance prices in phase I of 
the EU ETS. Mansanet-Bataller et al. (2007) highlight posi-
tive impacts of natural gas on EUA forward in phase I of the 
EU ETS using a multiple linear regression model. Zhao et al. 
(2020) investigate the nonlinear Granger causality in China’s 
carbon emission trading markets by using the Hiemstra and 
Jones test and Diks and Panchenko test; they demonstrate a 
significant bidirectional nonlinear Granger cause in China’s 
major carbon emission trading markets.

In addition, the conditional vine copula is used to study 
the relationship between the carbon emission market and 
energy markets, including natural gas, coal, and electric-
ity; a weak and negative correlation between carbon prices 
and natural gas prices is found (Chevallier et al. 2019). 
Also, different copulas are applied to explore the complex 
dependence structure between EUA futures and natural gas 
futures, and a positive dependence structure between them 
is discovered (Gronwald et al. 2011). Hanif et al. (2021) 
examine the spillovers between the prices of EUA and the 
indices of clean energies by using the BK spillover index 
and find a dominance of short-run spillovers between 
the two series over their long-run counterpart. Wang and 
Guo (2018) and Ji et al. (2018) investigate the spillovers 
between the carbon emission and energy markets using the 
DY spillover index and reveal that the dynamic spillover 
effects between the carbon and natural gas/clean energy 
markets exist. Chen et al. (2019) and Mansanet-Bataller 
and Soriano (2009) explore the volatility transmission in 
the carbon emission and energy markets with a BEKK 
model and show a positive correlation between the EUA 
and natural gas. Gargallo et  al. (2021) use the DCC-
GARCH model to analyze the co-movements between the 
carbon emission and energy markets, and find bidirectional 
spillover effects between EUA and natural gas. Similarly, 
Balcilar et al. (2016) detect the risk spillovers between 
prices of energy futures and Europe-based carbon futures 
with the DCC-GARCH model and find dynamic risk trans-
mission from energy markets, including natural gas, to the 
carbon market.
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Since “information transmission” is essentially about the 
flow of information, a few researchers have adopted the con-
cept of information flow to examine whether carbon emis-
sion information is transmitted to the clean energy market. 
Their attempt is to approximate the “information flow” to 
the real physical notion using some empirical measures. For 
instance, Hung (2021) investigates with transfer entropy the 
causal association between green bonds and clean energy/
CO2 emission allowances and finds a unidirectional connec-
tion from green bonds to the prices of  CO2 emission allow-
ances. Gao et al. (2020) studied the “information flows” 
from the  CO2 emission market to the renewable energy stock 
market and highlight that EUA price “information flows” to 
the S&P GCE clean energy prices vary at different scales.

It merits mentioning that as of today, the important con-
cept of information flow has been rigorously derived from 
the first principles. This forms our motivation to reconsider 
the above problem based on this newly established sys-
tematic theory. Besides, the aforementioned studies have 
allowed for influence of the carbon emission market on the 
clean energy markets, while the dynamic causality in return 
and in variance between the prices of EUA and the index of 
clean energies remains unexplored. For these reasons, this 
study extends the related literature.

Materials and methods

Data

The main variables considered in this paper are the S&P 
GSCI Carbon Emission Allowances (EUA) and the S&P 
Global Clean Energy Index (CEI), which are obtained from 
S&P Global (https:// www. spglo bal. com/ en/). The S&P 
GSCI EUA closely tracks the trend of actual EU ETS per-
mit prices, which is the most influential carbon trading asset 
in the world. More importantly, it provides market partici-
pants with a reliable and publicly available investment per-
formance benchmark for European Carbon Emission Allow-
ances and facilitates them to express a specific view on the 
price of carbon, or combine carbon emissions with other 
assets to create low-carbon strategies while promoting the 
transition to the global climate neutrality. Thus, it can be 
an appropriate proxy of the global carbon emission market 
quotations. The S&P Global Clean Energy Index is designed 
to measure the performance of top companies in global clean 

energy-related businesses from both developed and emerg-
ing markets which broadens the financial instruments avail-
able to market participants concerned about climate change 
and environment improvements. As of March 2022, market 
cap of European companies accounts for 52.45% of the total 
market cap of the S&P Global CEI. Because it tracks the 
largest and most liquid stocks worldwide which are involved 
in clean energy business, we follow the majority of the 
recent literature (Asl et al. 2021; Dawar et al. 2021; Liu et al. 
2021) and use it as an appropriate proxy of the global clean 
energy market quotations. Allowing for 57% of the total 
amount of the general carbon emission allowances auctioned 
in phase III (2013–2020) and phase IV (2021–2030), which 
are different from the previous two phases (https:// ec. europa. 
eu/ clima/ polic ies/ ets/ aucti oning_ en# tab-0-0), the start date 
of the analyzed period is 2 January 2013, the beginning of 
the third phase of the EU ETS. Because the fourth phase has 
just begun, and has adopted a new and revised legislative 
proposal of the EU ETS, which sets a binding EU target of 
a net GHG reduction by at least 55% by 2030, and aims to 
strengthen the EU ETS as an investment driver by increasing 
the pace of annual reductions in carbon emission allowances 
to 2.2% from 2021 onwards compared to 1.74% previously, 
the ending date of the analyzed period is 31 December 2020, 
the end of the third phase of the EU ETS. After matching the 
timestamps of both time series, a total of 2016 daily observa-
tions are included in the sample period.

We  d e n o t e  REUA
t

= log
(
PEUA
t

)
− log

(
PEUA
t−1

)
 a n d 

RCEI
t

= log
(
PCEI
t

)
− log

(
PCEI
t−1

)
 as the log returns of EUA 

and CEI, respectively, where PEUA and PCEI are the prices 
of EUA and CEI. The descriptive statistics of the data are 
provided in Table 1.

As shown in Table 1, log returns of the EUA have a 
higher average value than the clean energy index, mean-
ing that the carbon emission market is more favorable 
for financial participants, while the standard deviation 
of the former is larger than that of the latter, indicating 
that the carbon emission market is more volatile. The two 
log return series are skewed to the left and show high 
excess kurtosis, indicating that they have non-normal 
distribution. The Jarque–Bera (JB) statistics also indi-
cate a significant absence of normality for log returns 
of EUA and CEI. The augmented Dickey-Fuller (ADF) 
tests for the two log return series undoubtedly reject the 
null hypothesis of having the unit root at a 1% signifi-
cance level, indicating that they are stationary and turn 

Table 1  Descriptive statistics

Variables Mean Std Skewness Kurtosis JB test ADF test Ljung-Box Q(20) LM ARCH test

R
EUA 0.0008 0.0338  − 1.1697 20.6350 26,570***  − 21.8413*** 90.468*** 18.9224***

R
CEI 0.0007 0.0134  − 0.8781 16.4227 15,385***  − 15.2629*** 131.38*** 123.2901***
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out to be integrated in the same order of 0 lag. There-
fore, analysis of the causality between the EUA and CEI 
can be conducted. The statistics of Ljung-Box test are 
significant and show the existence of serial correlation. 
Further, the LM ARCH test significantly rejects the null 
of homoscedasticity at a 1% significance level, implying 
that the heteroscedastic model, i.e., Generalized AutoRe-
gressive Conditional Heteroskedasticity (GARCH) model 
(Bollerslev 1986), is suitable to capture their conditional 
variances.

Figure 1 shows that lower market fluctuations in EUA 
prices are observed from 2013 to 2018. Then the latest 
reforms on the withdrawal of excess supply of carbon 
emission allowances caused a significant rebound in the 
price. EUA prices soared after that until the beginning of 
2020, when the COVID-19 pandemic caused stagnation 
in global production and some concern and uncertainty 
in the recovery of certain key sectors in energy demand, 
leading to a turmoil in financial markets. After that, EUA 
prices follow a rising trend as the economy picks up. The 
evolution of the CEI prices is similar to that of the EUA, 
although a relatively steady movement is displayed from 
2013 to the beginning of 2020. It seems that the increase 
of the EUA prices encourages production and use of clean 
energies, and further exerts a more important influence 
on stock prices of clean energy companies. Log returns 
of both EUA and CEI show stationarity and obvious vola-
tility clustering. The log returns of the EUA are clearly 
more volatile from the beginning of the sample period 
until the middle of 2014 than those of the CEI. In addi-
tion, high volatility of EUA and CEI is observed during 
the outbreak of the COVID-19 pandemic.

Methodology

To examine the dynamic causal relationship in return and in 
variance between  CO2 emission allowance prices and the clean 
energy index, we follow the recently developed causality analy-
sis with a rolling window algorithm developed by Liang (2014, 
2016). In order to fit the autoregression and conditional vari-
ances of log returns of EUA and CEI, the autoregression with 
the GJR-GARCH (ARMA-GJR-GARCH) model introduced by 
Glosten et al. (1993) is employed. This is one of the most popular 
models ever proposed to represent conditional heteroscedasticity 
with volatility clustering and leverage effect in financial markets.

The rigorously derived quantitative causality analysis

Causal inference is of central importance for researchers in 
various disciplines. Recently, in terms of information flow, 
Liang (2008, 2014, 2016) found that causality is actually a 
real physical notion (not just something in statistics) which 
can be rigorously derived from first principles, initially moti-
vated by a discovery in a two-dimensional dynamic system 
(Liang and Kleeman 2005). Because of the formalism ab ini-
tio, it is universally applicable, quite different from other 
empirical/half-empirical formalisms. In the following, a brief 
introduction of the part pertaining to this study is presented. 

Consider a stochastic dynamic system

where � and � are n-dimensional vectors, � is a pertur-
bation coefficient matrix with n rows and m columns, and 
� is a standard Wiener process vector with m elements. 

(1)d� = �(�, t)dt + �(�, t)d�

Fig. 1  Price and log return 
series of EUA (left) and CEI 
(right)
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Throughout the paper, � and � are supposed to be differenti-
able in � and time t. The rate of information flowing (RIF) 
from Xj to Xi (in nats per unit time) proves to be (Liang 
2016)

where E denotes mathematical expectation, and �i = �i(xi) 
and 𝜌j̃ = ∫

ℜ
𝜌(�)dxj are the marginal probability of density 

function of Xi and the joint probability of density function 
of � with Xj removed, respectively; gii =

m∑
k=1

bikbik ; d�ĩj̃ 

stands for d� but with d�i and d�j removed. Ideally, if 
Tj→i = 0 , then Xj is NOT causal to Xi ; otherwise, it is causal 
(for either positive or negative information flow). But in 
practice, significance test must be performed.

Equation (2) has many nice properties, one of which is 
the “principle of nil causality”: if the evolution of an event 
is independent of another event, then the causality (or the 
RIF) from the latter to the former is zero. This is the only 
quantitatively stated observational fact in causal inference; 
it has defied the classical formalism under numerous cir-
cumstances, but within Liang’s framework, it turns out to 
be a theorem. In addition, Tj→i is invariant upon nonlinear 
coordinate transformation.

Let X1 and X2 be two time series, and the maximum likeli-
hood estimator of the RIF from X2 to X1 , under the assump-
tion of a linear model with additive noise, is proved by Liang 
(2014) to bear a very concise form:

where Cij is the sample covariance matrix between Xi and 
Xj , and Ci,dj is the sample covariance between Xi and a series 
derived from Xj using Euler forward differencing scheme:

Δt being the time step size. This concise formula has had 
remarkable success in resolving a variety of real-world prob-
lems, for example, global climate change (Stips et al. 2016), 
meteorology (Yang et al. 2021), neuroscience (Hristopulos 
et al. 2019), and financial markets (Liang 2015; Lu et al. 
2020), to name a few. A direct corollary is that causation, 
in linear sense, implies correlation, but correlation does not 
imply causation.

The above formula does not need to be applicable for the 
whole duration; the dynamic causality—from X2 to X1 , which 
in general varies in time, can be obtained by applying the for-
mula window by window with a rolling window algorithm.

(2)

Tj→i = −E

�
1

𝜌i ∫ℜn−2

𝜕(Fi𝜌j̃)

𝜕xi
d�ĩj̃

�
+

1

2
E

⎡
⎢⎢⎣
1

𝜌i ∫
ℜn−2

𝜕2(gii𝜌j̃)

𝜕x2
i

d�ĩj̃

⎤
⎥⎥⎦

(3)T2→1 =
C11C12C2,d1 − C2

12
C1,d1

C2
11
C22 − C11C

2
12

(4)Ẋj,n =
(
Xj,n+1 − Xj,n

)
∕Δt

ARMA‑GJR‑GARCH model

GARCH models have the power of investigating con-
ditional heteroscedasticity with volatility clustering 
and leverage effect in financial markets (see Agnolucci 
2009; Dyhrberg 2016; Lin 2018; among others). Specifi-
cally, the ARMA-GJR-GARCH model of Glosten et al. 
(1993) is suitable for our case, as it allows one to study 
the volatility features of carbon emission prices and clean 
energy stock index (Benz and Trück 2009). The standard 
ARMA(m, n) − GJR − GARCH(p, q) model is presented as 
follows:

where xt is a stationary time series, such as REUA
t

 or RCEI
t

 , � 
and � are constants, �t are residuals, ht are the conditional 
variance of �t , and �t belongs to a normal or Student’s t dis-
tribution. Due to rejection of the normal distribution accord-
ing to the Jarque–Bera (JB) statistics of log returns of EUA 
and CEI (Table 1), the Student t distribution is chosen for �t . 
It−1 = 1 if 𝜀t−1 < 0 , and 0 otherwise. � measures the leverage 
effect, that is, asset return volatility rises more following bad 
news than following good news. 𝜔 > 0 , �i ≥ 0 , �j ≥ 0 , and 
max (p,q)∑

i=1

�
𝛼i + 𝛽i

�
< 1.

Results

In line with most of the classical literature, in this section, 
we first investigate the static causality in return to identify 
the information flow between the carbon emission market 
and the clean energy market over the full sample period. 
Specifically, the traditional Granger causality test (Granger 
1969) and the Liang formalism (Liang 2014, 2016) are 
employed to detect the causal relationship between EUA 
and CEI in the full sample. The results are listed in Table 2.

As shown in Table 2, the T value estimated with Eq. (3) for 
the causality from EUA to CEI is 0.0052. The corresponding 
confidence interval at the 90% probability level is [− 0.0005, 
0.0109], inclusive of 0. Therefore, the null hypothesis that 
the EUA log returns do not cause the CEI log returns can-
not be rejected at the 10% significance level, indicating that 
the T value of 0.0052 is not significantly different from 0 at 

(5)xt = � +

m∑
i=1

�ixt−i + �t −

n∑
j=1

�i�t−i

(6)ht = � +

p∑
i=1

�i�
2
t−i

+

q∑
j=1

�jht−j + ��2
t−1

It−1

(7)�t =
√
ht�t �t ∼ i.i.d. f (0, 1)
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the 10% level. In the other way, the T value for the causality 
from CEI to EUA is − 0.0073. Its corresponding confidence 
interval at the 90% probability level is [− 0.013, − 0.0016], 
which is exclusive of 0, indicating that there is a statistically 
significant causality from the CEI log returns to the EUA log 
returns at the 10% significance level.

The Granger causality test between EUA and CEI is 
developed from vector autoregressive (VAR) model, and the 
smallest BIC (− 15.4258) means that the optimum lag order 
of the Granger causality test is 1. The results out of the two 
methods are generally in accord with each other. The F sta-
tistics show that the null hypothesis of no causality running 
from CEI to EUA is rejected at the 10% significance level 
over the full sample period, but not the reverse, indicating 
the existence of a significant and unidirectional causality 
running from the clean energy market to the carbon emis-
sion market on the conditional mean and a clear directional 
statement regarding temporal predictability of the former 
to the latter.

Although consistent results are obtained from the Liang 
causality analysis and the Granger causality test, it is worth 
noting that the Granger causality test could not be robust 
because spurious Granger causality in mean may arise due 
to unobserved variables that influence the system dynamics, 
such as variances of variables (Liang 2014, 2016), and due 
to observational noise. Besides, the Granger causality test 
cannot provide time-varying causalities between variables, 
which are more important for market participants to make 
real-time decisions. Another problem about the Granger 
causality test is that it only tests the time-lag relationship 
between variables and the contemporaneous causality is hard 
to infer (Xu and Zhang 2022), which means it cannot detect 
the contemporaneous information flow between different 
variables. Therefore, the following content in this section 
explores the dynamic causality in return and that in variance 
between EUA and CEI, with a rolling window algorithm 
developed by Liang (2014, 2016) based on information flow.

By and large, both the Granger causality test and the 
Liang method (Table 2) yield similar results; that is, there is 
a static and unidirectional causality in mean running from 
the clean energy market to the carbon emission market over 
the full sample period, but not the reverse. Outcomes of the 
causality tests imply the significant information flow from 
the clean energy market to the carbon emission market, 

indicating the former can improve the prediction of the lat-
ter based on the conditional mean.

Next, the dynamic causality in return between the 
two variables is firstly examined. Then, we use the 
ARMA(m, n) − GJR − GARCH(p, q) model to obtain the 
conditional variances of EUA and CEI. The Liang causality 
analysis is then used to detect the potential dynamic causal 
relationship in variance between EUA and CEI.

Causality in return

In Fig. 2, the blue line is the dynamic T value estimated 
with Eq. (3) using the rolling window algorithm developed 
by Liang (2014, 2016) with two red lines marking the con-
fidence interval at a 90% probability level. If the confidence 
interval does not include 0, the null hypothesis of no causal-
ity or RIF in that period is rejected at the 10% significance 
level, and the T value is significantly different from 0 at the 
10% significance level. On the contrary, if the confidence 
interval includes 0, the null hypothesis cannot be rejected 
at the 10% significance level, indicating that the T value is 
not significantly different from 0 at the 10% significance 
level. Without loss of generality, we choose a rolling window 
length of 250 trading days for the estimation purpose.

Figure 2 clearly shows that at the 90% probability level, 
confidence intervals of the T values that measure the causali-
ties between EUA and CEI almost entirely include 0 from 
the beginning of the chosen rolling window until February 
2020. This implies that the null hypothesis of no causality 
in return between EUA and CEI cannot be rejected at the 
10% significance level, and hence, the EUA does not sig-
nificantly cause CEI and vice versa. It is worth noting that, 
after March 2020, the causal relationship in return between 
EUA and CEI becomes obviously stronger. Especially, T 
values of the causalities running from CEI to EUA are sig-
nificantly different from 0, indicating that the change in the 
clean energy market significantly affects fluctuations of the 
carbon emission market at the 10% significance level during 
that period. In contrast, T values of the causalities running 
from CEI to EUA are not always significantly different from 
0 after March 2020. There are several short periods when 
causalities from the carbon emission market to the clean 
energy market are significant at the 10% level. It can be seen 
in Fig. 1 that, after March 2020, carbon emission allowances 
and the clean energy index experienced a dramatic increase. 
It appears as if, under the lower fluctuations of the clean 
energy market, it has a weak predictive power on the carbon 
emission market, and vice versa, while under its bull market 
condition, it has a strong predictive power on the carbon 
emission market and the predictive powers of the carbon 
emission market on the clean energy market also obtain a 
certain improvement.

Table 2  The static causality tests for EUA and CEI over the full sam-
ple period

*Statistical significance at the 10% level.

R
EUA

→ R
CEI

R
CEI

→ R
EUA

Liang (T) 0.0052  − 0.0073*
Granger (F) 2.233 4.371*
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In general, the dynamic T values show that the 
carbon emission and clean energy markets interact 
with each other in a complex fashion. Under the nor-
mal market condition, there exist fewer causalities in 
return between the two markets. Under the bull mar-
ket condition of the clean energy market, causalities 
in return between the two markets become stronger. 
Therefore, market participants concerned about cli-
mate change and environment improvements need to 
adjust decisions according to market conditions. For 
example, the significant causalities in return running 
from the clean energy market to the carbon emission 
market indicate that for investors, the EUA plays a 
strong hedging role against the clean energy index 
variations during these periods. That is to say, it is 
profitable for investors to include the EUA into their 
portfolios in the increasing phase of the CEI.

Estimation of ARMA‑GJR‑GARCH model

According to the Ljung-Box test and LM ARCH test as 
shown in Table 1, serial correlation and heteroscedastic-
ity exist in log returns of EUA and CEI. We hence use the 
ARMA-GARCH model to capture their stylized features. In 
light of BIC criterion, the ARMA-GJR-GARCH with Stu-
dent t distribution is chosen. The estimated results of the 
parameters in the model are listed in Table 3.

The tabulated results show that the ARMA((1, 4), (4)) − GARCH(1, 1) − t 
model and the AR(1) − GJR − GARCH(1, 1) − t model are suitable to fit 
the log returns of EUA and CEI, respectively, according to the 
BIC criterion. The coefficients in the ARMA models are all 
statistically significant, indicating the present log returns of 
the two series are impacted by the corresponding previous log 
returns, with lags of orders 1 and 4 for EUA and lag of order 1 
for CEI. The Ljung-Box test for the first ten lags of the sample 
autocorrelation function of residuals exhibits no significant 
series correlation for EUA and CEI. Thus, the ARMA models 

Fig. 2  Dynamic causality in 
return between EUA and CEI
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Table 3  Estimation of the ARMA-GJR-GARCH model

*** and * indicate statistical significance at the 1% and 10% levels, respectively.

Variables R
EUA

R
CEI

ARMA � �
1

�
4

�
4

� �
1

0.00124***  − 0.04214*** 0.86456***  − 0.85230*** 0.00061* 0.15219***
GJR-GARCH � � � � � � � �

1.03E − 05*** 0.08745*** 0.90722*** – 2.35E − 6*** 0.05582*** 0.89062*** 0.06491***
Degrees of 

freedom
BIC Ljung-Box 

Q(10)
LM ARCH 

test
Degrees of 

freedom
BIC Ljung-Box 

Q(10)
LM ARCH test

4.93423***  − 4.340626 8.8669 0.001857 6.11754***  − 6.203741 9.8958 0.019838
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can preserve the residuals of the EUA and CEI log returns at 
a conventional level. In terms of GJR-GARCH model, the 
ARCH and GARCH items are always significant. These out-
comes mean that the present variances of the two log return 
series are easily impacted by the information in the previous 
period. The asymmetric term � is statistically significant and 
positive for CEI at the 1% level, which means the leverage 
effect exists for CEI, the impact of shocks is asymmetric, and 
negative shocks increase the conditional variances of CEI log 
returns. However, the asymmetric term � of EUA is not statis-
tically significant, which implies that the impact of shocks on 
EUA log returns is symmetric. The degrees of freedom reject 
the null hypothesis, indicating that the Student t distribution 
of standardized residuals is more appropriate than the normal 
distribution and can capture the fat tails and kurtosis of the 
two log return series. The LM ARCH test statistics for the 
two log return series indicate no ARCH effect remaining in 
the residuals of the models.

The time-varying conditional variances of EUA and CEI 
are displayed in Fig. 3. It can be observed that the maximum 
of the conditional variances of EUA took place in 2013, 
while that of CEI took place in 2020. In 2013, the first year 
of the third stage of EU ETS, policy changes resulted in the 
price of EUA going up. In 2020, the clean energy index had 
a great growth, so the CEI experienced much volatility.

Causality in variance

To investigate the causality in variance between EUA and 
CEI, the time-varying conditional variances for the two 
series from the ARMA-GJR-GARCH model are input into 
Eq. (3) to compute the causality. The results are shown in 
Fig. 4. It can be seen that this figure starts with a very low 
level of T values, similar to those in Fig. 2. This implies that 
the carbon emission and clean markets are not integrated, 
and variances of EUA do not influence those of CEI, and 
vice versa. However, if we go over the confidence intervals 

of the T values at the 90% probability level from the begin-
ning of the chosen rolling window to February 2020, we 
can find that there are several periods that do not include 
0, indicating that there exist significant causalities at the 
10% significance level between variances of EUA and CEI. 
Regarding significant causalities in variance from CEI to 
EUA, the sporadic periods are January through June 2016, 
October through December 2016, and July through Sep-
tember 2018, while in the other way around, the significant 
periods are May 2014, June 2015, and December 2016. Par-
ticularly, larger absolute T values show up after March 2020 
in Fig. 4, indicating EUA and CEI are bidirectionally causal 
in variance after March 2020. As a note, the T values switch 
their signs (+ / −). This means the causalities in variance 
between EUA and CEI are different from those in return. 
The causal relationship from CEI to EUA in return is nega-
tive, indicating that the increase in RCEI

t
 will cause decrease 

in REUA
t

 . However, the causal relationship in variance from 
CEI to EUA is positive, which means that increase in condi-
tional variances of CEI will cause the increase in conditional 
variances of EUA. On the other hand, the causal relationship 
from EUA to CEI in return is positive and not so significant, 
indicating that the increase in RCEI

t
 may cause increase in 

REUA
t

 . Nevertheless, the causal relationship from EUA to CEI 
in variance is significantly negative, which means that the 
increase in conditional variances of CEI will cause decrease 
in conditional variances of EUA.

By examining variances of EUA and CEI in Fig. 3, it can 
be found that the significant and bidirectional causalities in 
variance happens during the dramatic volatilities of the vari-
ances of EUA and CEI, especially the latter. The results gen-
erally reveal stronger causalities in variance between EUA 
and CEI under the market turmoil. This suggests that the 
change in variances of the clean energy market can provide 
better predictive powers for variances of the carbon emission 
market, and vice versa. It also suggests that the importance 
of identifying the causalities in variance between EUA and 
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Fig. 3  Time-varying conditional variances of EUA and CEI
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Fig. 4  Dynamic causality in variance between EUA and CEI
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CEI in a dynamic way is crucial for market participants to 
efficiently manage the investment portfolios and to imple-
ment optimal risk decisions.

Conclusions

An understanding of the causal relationship between the car-
bon emission market and the clean energy market is essential 
for probing the interaction between the  CO2 emission allow-
ance prices and clean energy asset prices. It is beneficial for 
financial participants to obtain better risk-adjusted returns 
from their well-diversified portfolios and to improve the 
portfolio performance; it is also beneficial for policymakers 
to adopt effective measures to properly promote the prices 
of EUA so that the carbon emission market could provide 
stimuli to transfer traditional resources to clean resources. 
Based on the CEI and EUA data during the period spanning 
from 2 January 2013 to 31 December 2020, this paper stud-
ies the causal relationships in return and in variance between 
 CO2 emission allowance prices and the clean energy index, 
using a novel time-varying causality analysis with a rolling 
window algorithm developed by Liang (2014, 2016).

Our results reveal that the causal relationships in return 
and in variance between EUA and CEI are time-varying. 
Regarding the causality in return, most of the time in the 
considered period, no significant causality has been identi-
fied between  CO2 allowance prices and clean energy index; 
a unidirectional long-term and stable causality in return from 
CEI to EUA is identified after March 2020. For the causal-
ity in variance, EUA and CEI have bidirectional causality 
after March 2020, but T values of causality, i.e., the rate of 
information flow, after 2020 are opposite to those in return. 
It seems that under lower fluctuations of the clean energy 
market, the clean energy market has a weak causality on the 
carbon emission market, while under the increasing situ-
ation of the clean energy market, causalities between the 
two markets have been significantly strengthened. Moreover, 
there are some sporadic periods when causalities in variance 
between the two markets are significant at the 10% level 
before February 2020, indicating that the carbon emission 
and clean energy markets interact in a complex way.

Our results have several important implications for inves-
tors as well as for policymakers. With high liquidity and 
similar financial asset characteristics, EUA has become an 
interesting financial investment tool to continue to contrib-
ute to realization of a low-carbon economy. Financial inves-
tors can benefit from the causality running from the carbon 
emission market to the clean energy market, or vice versa, 
when they allow for EUA and CEI in their diversified port-
folios. For example, Tu et al. (2019, 2021) highlighted that 
the high trading price of carbon emissions may increase the 
revenues of the clean energy investment from the carbon 

abatement and then improve the performance of the clean 
energy-related companies. Hence, portfolios including the 
carbon emissions and clean energy-related companies are 
probably considered by the financial participants concerned 
about climate change and environment improvements. In 
addition, policymakers can use EUA to put certain pres-
sure on enterprises with high emission and high pollution 
to move on, energy-mix transformation, and development 
of clean energy-related industries. For example, implement-
ing appropriate carbon price and auction ration of carbon 
permits is able to accelerate the phase-out of operating coal 
power plants and reduce the implied risk for newly built coal 
plants to become stranded asset (Mo et al. 2021a, 2021b). 
Moreover, the results imply that policymakers should con-
sider not only the causality in return, but also the causality 
in variance, between EUA and CEI, in attempt to implement 
their policies regarding the global climate neutrality.
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