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A B S T R A C T

In this study, we analyze spatial and temporal sea surface temperature (SST) and chlorophylla (Chl-a) con-
centration in the East China Sea (ECS) during the period 2003–2016. Level 3 (4 km) monthly SST and Chl-a data
from the Moderate Resolution Imaging Spectroradiometer Satellite (MODIS-Aqua) were reconstructed using the
data interpolation empirical orthogonal function (DINEOF) method and used to evaluated the relationship be-
tween the two variables. The approaches employed included correlation analysis, regression analysis, and so
forth. Our results show that certain strong oceanic SSTs affect Chl-a concentration, with particularly high cor-
relation seen in the coastal area of Jiangsu and Zhejiang provinces. The mean temperature of the high correlated
region was 18.67 °C. This finding may suggest that the SST has an important impact on the spatial distribution of
Chl-a concentration in the ECS.

1. Introduction

As the largest epicontinental sea in the western Pacific Ocean (Jiao
et al., 2007), the East China Sea (ECS) has a broad continental shelf area
of about 5×105 km2 (Gong et al., 2003). It is connected to the Pacific
Ocean, the South China Sea, the Sea of Japan, and the Yellow Sea by a
very complex ocean system having both deep and shallow sea features.
Situated east of China, it is of undeniable value to the nation, for its
characteristics affect the entire coastal region (Johnson and Toy, 2017).

Being characterized by the variable seasonal river runoff and a wide
continental shelf, the ECS is highly dynamic (Zhang et al., 2007;
Siswanto et al., 2008). The Yangtze River discharge brings both nu-
trients and fresh water to the ECS in abundance but has heightened
levels of dissolved inorganic nitrogen since the 1980s (Xu et al., 2013;
Gong et al., 1996). Some researchers reported that the Yangtze River
discharge can affect upper-ocean stratification and thereby contributes
to a reduction in summer SST in the ECS (Kako et al., 2016; Gong and
Wong, 2017; Zhang et al., 2017). The correlation between SST and Chl-
a was significant at a certain temperature (Kavak and Karadogan,
2011). However, excessive temperature would inhibit the increase of
Chl-a concentration (Nurdin et al., 2013). It is also found that when the
seasonal river discharge is high (low), correlation between SST and
chlorophyll is positive (negative) in the coastal Bay of Bengal region

(Jutla et al., 2011).
According to the previous studies, the SST of ECS had experienced a

significant warming trend during the past four decades (Tang et al.,
2009; Bao and Ren, 2014). The SST of ECS has obviously seasonal and
interannual changes (Bao and Ren, 2014). Summing up the distribution
of SST in the ECS, it is noted that the isotherms are mostly parallel to
isobaths, running in the southwest-northeast direction (Tseng et al.,
2000).

As a biological parameter, Chl-a concentration reflects an abun-
dance of phytoplankton. By observing it, we can monitor conditions
favorable to red tide, cyanobacteria, and other causes of marine bio-
logical disaster (Steidinger and Haddad, 1981; Tomlinson et al., 2004).
According to the previous studies (Thomas et al., 2001; Gong et al.,
1996), many factors could affect the Chl-a concentration (Tran et al.,
1993). For example, the Kuroshio Current can affect Chl-a concentra-
tion, in the core of cyclonic (or anticyclonic) eddies in the Kuroshio
Extension, the high (or low) area-averaged Chl-a concentrations often
occured (Shinya et al., 2016), and cold-core (cyclonic) rings correspond
to areas of high Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Chl-
a. Warm-core (anticyclonic) rings relate to the areas of low Chl-a con-
centration (Chu and Kuo, 2009).

Barber and Chavez (1983) have conjectured that the levels of nu-
trients and phytoplankton biomass and primary productivity are clearly
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regulated by the physical changes brought on by El Niño. Subsequently,
many researchers have confirmed the relationship between phyto-
plankton variability and the El Niño–Southern Oscillation (ENSO)
(Nakamoto et al., 2001; Park et al., 2011), with some studies reporting
that surface Chl-a concentrations were associated with the 1997–1998
and 2015–2016 El Niño events (Mati and Mitchell, 2000; Jacox et al.,
2016). Because of the eastward zonal advection of upper ocean cur-
rents, two types of El Niño events (Cold Tongue El Niño and Warm Pool
El Niño) can produce anomalous Chl-a concentrations (Lee et al., 2014).

Some researchers have investigated the relationship between Chl-a
concentration and SST for a particular sea area. In the ECS, for example,
the SST has great effect on the red tide with the correlation coefficient
reached 0.707 (Yang and He, 2009). With the increase in SST, the Chl-a
showed a decrease in the Zhejiang coastal waters (Wang et al., 2010). In
comparison, in the Black Sea, their correlation was estimated to be 60%
(Kavak and Karadogan, 2011). However, in the Spermonde Indonesia
region, an inverse correlation was reported, with the coefficient of
correlation at R=0.542 (Nurdin et al., 2013). There is an inverse re-
lationship at most of the locations of the Arabian Sea during January to
April, while the northwest region shows a positive relationship during
October to December (Chaturvedi, 2005). The time series of SST and
Chl-a for coastal and offshore regions have been compared in some
studies, and they found that for offshore region, it was usually inverse
relationship, but a positive relationship is observed between them in
coastal waters which have high river discharge (Jutla et al., 2011).
According to the researches of Colwell (1996) and Lobitz et al. (2000),
the phytoplankton and SST presented a positive relationship.

Hampered as they are by limited data, however, researchers have
rarely looked at seasonal variations of SST and Chl-a concentration, and
the relationship between the two, throughout the entire ECS shelf. Most
published papers have used in situ data, which is precise but incomplete
and is limited to the time. Herein, we reconstructed Moderate
Resolution Imaging Spectroradiometer Satellite (MODIS-Aqua) data
using the data interpolation empirical orthogonal function (DINEOF)
method, which fills in missing data from geophysical fields (Beckers
and Rixen, 2003), just as Miles and He (2010) took a DINEOF-based
approach to reconstructing MODIS data for the South Atlantic Bight so
as to analyze the characteristic and variance of SST and Chl-a.

In this paper, we aim to reconstruct and analyze the major features
of seasonal and interannual variability in Chl-a concentration and SST
in the ECS. We also want to examine the corresponding characteristics
of Chl-a spatial distribution and to assess the SST’s impact on it.

2. Data and methods

2.1. Data sets

The SST and Chl-a concentration data were derived from MODIS-
Aqua measurements, downloading from the oceancolor website
(https://oceancolor.gsfc.nasa.gov/) Level 3 (4 km) monthly data of SST
and Chl-a for the period from January 2003 to December 2016. All the
data were applied to our study area in the ECS at 117°–130°E and
23°–36°N (see Fig. 1).

2.2. Methods

2.2.1. The data interpolation empirical orthogonal function method
DINEOF is an empirical orthogonal functions (EOF)-based method

for filling in data missing from geophysical fields. We now briefly de-
scribe the DINEOF processing procedure (Beckers and Rixen, 2003;
Alvera-Azcárate et al., 2005):

First, we recombine the raw data into a matrix of dimensions’
m×n, where m is the number of space points and n is the months’.
Both original and missing data are contained in the matrix. Then we
randomly put 1% of the existing data into another matrix Xe to conduct
cross-validation. After that, we subtract the average temporal value of

the matrix and use MATLAB’s interp2 function to set the missing data
using the interpolating prediction value of each month (including cross-
validation data).

Step 1: By applying the singular value decomposition (SVD) to the
matrix, the spatial EOFs (U), temporal EOFs (V), and the singular values
matrix (S) is got:

X=USVT (1)

Step 2: We can then reconstruct the missing data using the formula:
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the missing data; k is the number of the EOF’s mode; Up and Vp are the
pth column of the spatial and temporal EOFs; and Sp is the singular
value.

Step 3: We can get a new matrix without missing data using Eq. (1),
where k=1. Then the root mean square error (RMSE) was calculated at
the cross-validation points using the mathematical expression
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where N is the points of cross-validation matrix.
Step 4: Then we reconstruct the matrix using the formula:

Xre=X+ αX (4)

Where αX is the correction matrix of the missing points (the points that
do not affect the observed ones). Then we perform step 1 to get U, V,
and S, iterating this process until the predefined convergence criterion
was reached and the value of R stabilized (the threshold value of
1× 10−4).

Step 5: Increase the number of reconstructed EOFs (k) from 2 to
kmax, with steps 1–4 repeated until we get the minimum R. Meanwhile,
the corresponding value of k can be obtained.

Step 6: We reconstruct the raw data with the value of k obtained in
step 5 (Wang and Liu, 2014).

2.2.2. Correlation analysis
In statistical analysis, the Pearson correlation coefficient is used to

evaluate for a linear relationship between selected variables of the data.
The expression is given by Pearson (1895) as
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where n is the sample size and r lies between −1 and 1, with 1 sig-
nifying total positive linear correlation, 0 no linear correlation, and −1
total negative linear correlation. It should be noted that there is no
causal link between the value of r and the degree of correlation. If
r=0, there is no linear relationship between variables. But they may be
connected by other ways; a t-test can be carried out to judge the re-
levant level.

All the data have been preprocessed before calculating the corre-
lation coefficient. Before analyzing Chl-a and SST time series correla-
tion, we preprocessed the data with the function ‘detrend’ in the
MATLAB. This function can subtract the mean or a best-fit line (in the
least-squares sense) from raw data. By removing the trend from the
data, it enables us to focus our analysis on the fluctuations in the data
about the trend. This method eliminated residual wiggles associated
with imperfect sampling of annual variations in the absence of sig-
nificant annual variation (Hartmann and Michelsen, 1989).

2.2.3. Calculation of standardization index
To compare an observation to a standard normal deviate, the data

were standardized using the Z-SCORE method. The method is based on
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the data mean and standard deviation for data standardization, which is
called the anomaly index and is calculated by (Zill et al., 2011):

= − = ………K X X
S

i n1,2,3, ,i
i

(6)

Where X is the mean of the population and S is the standard deviation
of the population.

If the absolute value of Ki lies between 0.1 and 1, it is in the normal
range, representing the distance between the raw score and the popu-
lation mean in units of the standard deviation. If it is greater than 1,
then it is abnormal. If it is greater than 2, then the datum far exceeds
the average value. If it is less than −1, it is on the low side.

2.2.4. Mann–Kendall test
Mann–Kendall (MK) test, a nonparametric test used to statistically

identify a monotonic trend in the variable of interest over time, even if
there is a seasonal component in the series. In the parametric linear
regression analysis, the MK test can be used to test whether the esti-
mated linear regression line’s slope is different from zero (Mann, 1945;
Kendall, 1975). The computational procedures are as follows (Yue and
Wang, 2004):

First, the MK statistic, S, is defined as:
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Where, xk and xi are the annual values in years’ k and i, and k > i,
respectively.

Then, the statistic S is approximately normally distributed when
n≥ 8, with the variance as follows:
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where t is the number of observations. The summation term in the
numerator is used only if the data series contains tied values.

Finally, the test statistic Zc is used as a measure of the significance of
a trend and it is given by:
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A positive and negative Zc values indicate an upward and downward
trend, respectively. When |Zc| > 1.64, it represents that the trend is at
the significance level of 0.05 in this study.

3. Results and discussion

3.1. The variation of chla concentration and SST

We selected the ECS of 117°–130°E and 23°–36°N as the study area.
The ability of the DINEOF to reconstruct the missing Chl-a and SST is
demonstrated in Figs. 1 and 2. The cross-validation RMSE of the SST
DINEOF reconstruction is 0.4694; for Chl-a, it is 0.5978. The raw Chl-a
covered only a part of the ECS, for the nearshore data were almost
missing (Fig. 1a). The DINEOF Chl-a (Fig. 1b), however, presented a
complete structure for the Chl-a concentration, effectively making up
the missing data.

To verify the credibility of the reconstructed data, we compared it
with the measured data of August 2011 (adopted from Fei et al., 2012).
The obtained result shows that the reconstructed Chl-a has a same
distribution as the measured Chl-a in the August of 2011. Especially in
the Yangtze River Estuary and the east of the Hangzhou Bay, their Chl-a
spatial distribution agrees well between the filled data and the in-situ
data.

Similarly, the DINEOF reconstructed the SST’s distribution in the
study area. It can be seen from Fig. 2 that the spatial SST’s distribution
is expected, for example, the blank area of SST in the north of Taiwan in
Fig. 2a to be produced in Fig. 2b.

In the ECS, we first computed the mean of the original and re-
construction field to gain a variation curve for Chl-a concentration
during the period 2003–2016. Fig. 3 shows the changes in Chl-a con-
centration from 2003 to 2016, with the blue curve representing the
original data and the yellow one the results of reconstruction. Chl-a
concentration as reconstructed is higher than seen in raw data, perhaps
as the result of higher nearshore Chl-a concentrations. Even so, it is
clear that both of the curves have the same trend of fluctuation. From

Fig. 1. The original (a) and DINEOF (b) Chl-a concentration of January 2016 (units: mg/m3).
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the DINEOF monthly average curve, we can see that Chl-a concentra-
tion reached a peak in April–May and declined to its low point in Ju-
ly–August or, sometimes, October–November. Peaks seen in 2009,
2010, 2012, and 2014 coincided with El Niño (Nakamoto et al., 2001;
Park et al., 2011).

Then, the yearly mean of the concentration were calculated (Fig. 4),
with blue representing original data and yellow for reconstructed data.
As evident from Fig. 4, the Chl-a value showed a fluctuating upward
trend from 2003 to 2010, but down to 1.3 mg/m3 in 2013. For the latest
three years, it maintained a high value of about 1.4mg/m3. On the
whole, yearly mean Chl-a concentration exhibited an uptrend, passing
the M-K test with a value of 2.3 (> 1.64) at the confidence of 95%,
meaning that the trend was significant, which is consistent with a
previous result (Kavak and Karadogan, 2011).

Using Eq. (2), the standard score of the whole monthly re-
construction of Chl-a concentration during the period of 2003–2016 for

Fig. 2. The original (a) and DINEOF (b) SST of January 2016 (unit: °C).

Fig. 3. Long-term changes of Chl-a concentration from 2003 to 2016 (Zc (DINEOF Chl-a) | > 1.64, the trend is significant, passing the M-K test with the confidence of 95%).

Fig. 4. Yearly mean of Chl-a concentration from 2003 to 2016 (Zc (DINEOF Chl-a)
| > 1.64, the trend is significant, passing the M-K test with the confidence of 95%).
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the selected area was calculated as shown in Fig. 5. Taking ki=2 as the
threshold, the high (low) value of the heat source is immediately ap-
parent. As seen from Fig. 5, high months were April 2006, April 2007,
April 2008, April 2009, April 2010, April 2011, March 2012, April and
May 2014, April 2015, and April 2016. This indicates that there may be
different extents of algae blooms in the springs of these years.

Fig. 6 shows the annual average of reconstructed SST for the ECS
from 2003 to 2016. During the period, SST fluctuated along a slight
upward trend. As the SST’s trend was not passing the M–K test threshold
of 95% confidence, this slight upward trend is not significant. Although
the annual average SST values was changing from 21.6 °C to 22.8 °C,
there was a downward trend during the period of 2007–2011, down to
21.6 °C in 2011, and then going upward to the peak value of 22.8 °C in
2016 (see Fig. 6).

Fig. 7 displays the monthly SST of the ECS during the entire annual
cycle for these 14 years, with the temperature tracing a sine curve that
reaches its maximum in summer and its minimum in winter. This
portrays an obvious cyclical change of SST from 2003 to 2016.

Figs. 8 and 9 show that monthly reconstructed Chl-a and SST were
temporally averaged to produce the monthly climatology for the study
area. Overall, as a result of nutrient rich runoff from land via rivers,

higher Chl-a concentrations are generally scattered along the coast and
the estuary region, such as the Yangtze River estuary. Along the con-
tinental shelf, Chl-a variability is highest near shore and decreases with
distance off shore, with its contours almost parallel to those of the
coastline, much as reported by Nurdin et al. (2013) and Wu et al.
(2008). Rainfall and river discharge markedly affected Chl-a con-
centration (Hendiarti et al., 2005). Observing the northeast area of the
Yangtze River, we can see a tongue-like high-value area about
123°–126°E and 30°–33°N: The Yangtze River discharge contributes to it
(Zhou et al., 2006; Wu et al., 2008).

Chl-a bloom is seen in spring (March, April, May) and reaches its
maximum in April, with concentrations decreasing thereafter. Fig. 8
gives the monthly average SST and Chl-a concentrations in the ECS. As
the yellow shows in the figure, April has the highest Chl-a concentra-
tion and September is the lowest. This result is consistent with the
findings of previous studies (Zheng et al., 2012; Zheng and Hao, 2010).
It also proved that the Chl-a concentration in the ECS is significantly
affected by Kuroshio Front (Chu and Kuo, 2009; Siswanto et al., 2008;
Shinya et al., 2016).

The climatological monthly composite of MODIS SST shown in
Fig. 9 clearly presents spatial and temporal distribution of SST, by

Fig. 5. Monthly DINEOF Chl-a concentration normalization index of 2003–2016.

Fig. 6. Long-term changes of annual mean SST reconstructions from 2003 to 2016 (Zc (SST) | < 1.64, the trend is insignificant, not passing the M-K test with the confidence of 95%).
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which the coastal areas and the region in the north of the ECS are
characterized by obvious seasonal variations: these regions are shallow,
and are subjected to river runoff. Comparatively speaking, SSTs in the
southeast ECS show small changes—because some researchers claim
that it is dominated by the warm Kuroshio Current (Xu et al., 2013). On
the whole, SST increases with distance off shore, and the isotherms are
nearly parallel to isobaths, running in the southeast direction, which is

same as the previous findings (Gong and Wong, 2017). SST is varying
seasonally (see Figs. 9 and 10): cold in winter (December, January,
February) and spring (March, April, May), but warm in summer (June,
July, August) and autumn (September, October, November). As re-
ported by previous studies, the ECS SST is impacted by many factors,
such as monsoons, tides, and river discharge (Kako et al., 2016;
Johnson and Toy, 2017; Nurdin et al., 2013).

Fig. 7. Monthly DINEOF SST variation of the ECS from 2003 to 2016 (Zc (DINEOF SST) | < 1.64, the trend is insignificant, not passing the M-K test with the confidence of 95%).

Fig. 8. Climatological monthly composite of MODIS Chl-a from 2003 to 2016 (The data were under the log-transformed).
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3.2. Chl-a and SST correlations

To determine the relationship between Chl-a and SST, we calculated
a correlation coefficient using the Chl-a and SST reconstruction data
sets. Fig. 11 shows the correlation coefficient distribution for Chl-a and
SST in the ECS during the period 2003–2016. Colored areas represent
high correlation between the SST field and the Chl-a field, with corre-
lation coefficients passing the t-test with a confidence level of 95%.
Table 1 gives the correlation coefficient, SST, and Chl-a concentration
for positive and negative correlated areas, respectively.

We used the SST and Chl-a of the regions of positive and negative
correlations from Fig. 11 to make a scatter plot of the SST and Chl-a
concentration (Fig. 12). As seen in Fig. 12a, there is a certain correla-
tion between SST and Chl-a in the ECS, at p < 0.05, according to

Table 1. The coefficient of determination (R2) is 0.3575 (for the positive
correlated area) and 0.4605 (for the negative correlated area), respec-
tively.

As shown in Fig. 11, the positive correlation area shows zonal dis-
tribution along the coastline. Especially in the north of Jiangsu Pro-
vince, the Yangtze River estuary region, and the Hangzhou Bay, the

Fig. 9. Climatological monthly composite of MODIS SST from 2003 to 2016.

Fig. 10. Monthly climatologically average of SST and Chl-a concentration of the ECS.

Fig. 11. Correlation between Chl-a and SST from 2003 to 2016 (the areas passing 95%
significance test with color); before correlation analysis of SSTs and Chl-a time series, the
data were de-trended.
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correlation areas and coefficients are larger and higher than those of
any other region where proximate to human-dominated landscapes. As
shown in Table 1, the correlation coefficient of the positive area is
0.3738. For the mean surface temperature, it is only about 18.67 °C,
whereas the concentration of Chl-a reaches up to 4.53mg/m3.

The southeast of the ECS shows a negative correlation between Chl-
a and SST. The mean correlation coefficient of the negative area is
−0.499, and the average temperature is about 22.81 °C. Compared
with the positive area, the Chl-a concentration of the negative area is
only 0.79mg/m3.

The regression of SST with Chl-a for the ECS (Fig. 13) also proves
statistically significant correlations between SST and concentration of
Chl-a. The areas of correlation in regression analysis are similar to the
results in Fig. 11, illustrating the significant relationship of SST and Chl-
a concentrations.

Fig. 14 gives the monthly average of SST and Chl-a concentration
for the positive correlated areas shown in Fig. 11. As the yellow curve
(Chl-a) in Fig. 14 shows, June has the highest Chl-a concentration and
March is the lowest. The Chl-a concentration curve becomes steep from
April to May, signifying the boom of chlorophyll in spring, whereas the
sea surface temperature rises gradually. The mean temperature of the
selected area is 19.53 °C and 23.29 °C in May and June, with the cor-
responding Chl-a concentrations 5.99mg/m3 and 6.19mg/m3, respec-
tively.

4. Conclusions

In this study, SST and Chl-a data obtained through MODIS-Aqua
were reconstructed using the DINEOF method, with a view to analyzing
the relationship between the two variables of the ECS. This analysis has
shown that Chl-a concentrations are highly correlated with sea surface
temperature.

We applied the self-consistent DINEOF method to reconstruct 14
years’ worth of satellite-derived (MODIS-Aqua) SST and Chl-a con-
centration data sets from the ECS. Compared with the raw data, the
processed results fill in the gaps in the data, with their root mean square
error reaching 0.4694 for SST and 0.5978 for Chl-a. The reconstructions
present the distribution and variation trend of the two variables pre-
cisely, but the accuracy of the algorithm and the pretreatment process
still needs to be refined in the future research.

After the data preprocessing, a long-term change trend in Chl-a
concentration from 2003 to 2016 was calculated. Chl-a concentration
peaked in April–May and reached a low in July–August or, sometimes,
in October–November. Peaks were evident in 2009, 2010, 2012, and
2014. The yearly mean shows a fluctuating upward trend in con-
centrations from 2003 to 2016. Analyzing the standard score of the
whole monthly reconstruction Chl-a concentration, it is found that April
2006, April 2007, April 2008, April 2009, April 2010, April 2011,
March 2012, April and May 2014, April 2015, and April 2016 were high

Table 1
The correlation coefficient of positive and negative area.

Area Parameter positive negative

Coefficient 0.3738 −0.499
Temperature (°C) 18.67 22.81
Chl-a concentration (mg/m3) 4.53 0.79

Fig. 12. Correlation scatter plot of the SST and Chl-a of the positive and negative correlated section in the ECS (2003–2016): (a) the positive correlation area, and (b) the negative
correlation area, with the coefficient of determination (R2) of 0.3575 and 0.4605, respectively.

Fig. 13. Regression coefficients of SST with Chl-a for the period of 2003–2016 (the areas
passed 95% significance test with color); the data were normalized before the correlation
analysis of SST and Chl-a time series.

Fig. 14. Monthly climatologically average of SST and Chl-a concentration of the positive
correlated areas in the ECS.
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times, which means the algae blooms in spring.
During the latest six years (2011–2016), the ECS SST has been risen

continually, exhibiting notable interannual change marked by a
summer maximum and winter minimum. From monthly climatology
averages of Chl-a and SST, their spatial distribution characteristics are
clear. Along the continental shelf, Chl-a variability is highest near shore
and decreases with distance off shore, almost paralleling to the coast-
line. Especial in the Yangtze River estuary, its values are higher than
elsewhere, indicating that river discharge markedly affects Chl-a con-
centrations. What’s more, Chl-a booms can be seen in spring. In com-
parison, the SST displays nearly the opposite trend. The shallow topo-
graphy of coastal areas and the north of the ECS is characterized by
large seasonal variations in SST.

Through correlation and regression analysis, we found that SST in
the coastal area (such as in the north coast of Jiangsu Province, in the
Yangtze River estuary region, and in the Hangzhou Bay) appreciably
affected Chl-a concentration, exhibiting a positive correlation.
Especially from April to June, concentrations of Ch-a increased sharply
with increases in SST—the same time when red tides frequently occur.
The mean temperature of these three months is 19.16 °C. For the
southeast of the ECS, the relationship between SST and Chl-a con-
centration is negative, but the specific relationship between them is not
clear. It is probably the low nutrient concentration that leads to it, or it
is very possible that the excessive temperature inhibits the growth of
phytoplankton.

Although the present work shows that Chl-a concentrations are
significantly affected by SST, previous studies indicated that certain
other factors should also be taken into account. These can include sea
surface salinity (SSS), surface flow zones, oxygen abundance, and
temperature gradients. But such factors will be addressed in the study
area in the near future.
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