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[1] Frontal meanderings are generally difficult to predict. In this study, we demonstrate
through an exercise with the Iceland-Faeroe Front (IFF) that satisfactory predictions may be
achieved with the aid of hydrodynamic instability analysis. As discovered earlier on,
underlying the IFF meandering is a convective instability in the western boundary region
followed by an absolute instability in the interior; correspondingly the disturbance growth
reveals a switch of pattern from spatial amplification to temporal amplification. To
successfully forecast the meandering, the two instability processes must be faithfully
reproduced. This sets stringent constraints for the tunable model parameters, e.g., boundary
relaxation, temporal relaxation, eddy diffusivity, etc. By analyzing the instability dispersion
properties, these parameters can be rather accurately set and their respective ranges of
sensitivity estimated. It is shown that too much relaxation inhibits the front from varying;
on the other hand, too little relaxation may have the model completely skip the spatial
growth phase, leading to a meandering way more upstream along the front. Generally
speaking, dissipation/diffusion tends to stabilize the simulation, but unrealistically large
dissipation/diffusion could trigger a spurious absolute instability, and hence a premature
meandering intrusion. The belief that taking in more data will improve the forecast does not
need to be true; it depends on whether the model setup admits the two instabilities. This
study may help relieve modelers from the laborious and tedious work of parameter tuning;
it also provides us criteria to distinguish a physically relevant forecast from numerical
artifacts.
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frontal meanderings, J. Geophys. Res. Oceans, 118, 5686–5702, doi:10.1002/jgrc.20406.

1. Introduction

[2] Fronts are ubiquitous in the ocean, and frontal varia-
bilities, usually in the form of large meanderings, are an
important part of oceanic variabilities. Frontal meanderings
are in nature highly nonlinear and hence generally difficult
to predict, especially when one seeks quantitative accuracy
rather than qualitative agreement in a statistical sense. In
this case one needs to take into account, for example, the
agreement in geometry, location, timing, etc.

[3] Let us assume that our models are sophisticated
enough to capture all the physics of frontal variation. The

question to ask is: how should a model be set up to achieve a
faithful simulation? A model setup includes model configu-
ration, parameter setting, data assimilation, etc. In numerical
modeling, perhaps the most tedious and laborious part of
work is parameter tuning, as usually the parameters can only
be empirically set. This especially becomes a problem in the
tuning of those engineering parameters, such as boundary
and temporal relaxations, which are not part of the underly-
ing physics, but simply manipulations to ensure numerical
stability or consistency. Which set of parameters should we
choose? Why should one particular set be preferred to
another? These issues must be carefully addressed before a
reliable simulation, particularly a simulation without a priori
knowledge of the future, can be made.

[4] Fundamentally, what we need from a simulation is,
first of all, a correct reproduction of the dynamical proc-
esses. It is meaningless (and precarious) just emphasizing
numerical accuracy while overlooking physical correctness.
Our answer to the above questions is, accordingly, model
setup must admit the dynamical processes underlying the
targeting phenomenon, and parameter tuning should not
hurt these processes. This is the rule of thumb in guiding
the setup of a model. In the case of frontal meanderings, it
has been observed that the underlying process often appears
in the form of a convective instability followed by an abso-
lute instability, and hence a spatial amplification locked into a
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temporally growing mode. To successfully forecast this type
of strong growth events, one thus must have the model set up
so that the process is not suppressed or altered. Other strat-
egies, such as taking in more observations, are by comparison
only of secondary importance.

[5] We demonstrate this with a real ocean front, namely,
the Iceland-Faeroe front or IFF for short. The IFF is a narrow
band with sharp gradients of temperature and salinity sepa-
rating the Arctic waters from the North Atlantic waters
(Figure 1). Its importance in climate study, fishery industry,
military operation, as well as physical oceanography, has
been well documented in the literature ; refer to Meincke
[1978], Muller et al. [1979], Smart [1984], Gould et al.
[1987], Scott and Lane [1990], Hopkins [1991], Niiler et al.
[1992], Read and Pollad [1992], Pistek and Johnson [1992],
Allen et al. [1994], Miller et al. [1996], Hansen and Oster-
husb [2000], Kostianoy et al. [2004], Astporsson et al.
[2007], and the references therein. We choose the IFF for
our demonstration for two reasons. First, the available high-
quality observations make this region an ideal test bed. In
August 1993, an unprecedented data set (IFF93 hereafter)
was acquired from the cruise of R/V Alliance by Harvard
University in collaboration with SACLANT Undersea Cen-
ter [Robinson et al., 1996]. It is composed of data from three
surveys intended for, respectively, model initialization,
enhanced adaptive observation, and model validation. Par-
ticularly, a matured meandering intrusion was captured dur-
ing the third survey, providing a very nice data set for

validation. Second, the intrinsic high variability of the IFF,
both in space and in time, makes the IFF forecast a touch-
stone for the aforementioned parameter tuning rule. So far
there have been several numerical studies on this front, e.g.,
Miller et al. [1995a, 1995b], Griffiths [1995], Fox and Mas-
kell [1996], Robinson et al. [1996], and Miller and Cor-
nuelle [1999], to name several. But how to simulate it well
remains a challenge. We have, after more than 150 experi-
ments with different combinations of parameters [see Liang
and Robinson, 2004], eventually obtained a successful simu-
lation of the observed meandering intrusion in terms of ge-
ometry, location, and timing. This success, however, is
based on the availability of the intrusion observation; if it
were a forecast without knowledge of the future, one would
have no idea which to pick among the different predictions.
As will be seen later, the common practice to update with
more data does not necessarily lead to a better result. In this
study, we will use our ‘‘rule of thumb’’—parameter tuning
should not hurt the underlying process(es)—as a constraint
to achieve the goal of simulation/prediction. Particularly,
we hope to apply this rule to select out a definite set of pa-
rameters to reduce the effort of repetitive experiments. Here
we do not claim that we can completely solve the problem of
parameter tuning, but only show that we have a successful
try that may be enlightening, and may help relieve modelers
from the laborious and tedious work. Our objectives are, to
be specific, (1) among the many tunable parameters, find the
most critical one(s) ; (2) for the critical parameter(s), find the
definition interval on which the model dynamics is relevant.

[6] For the IFF meandering, it has been discovered by
Liang and Robinson [2004] that the underlying dynamical pro-
cess is a convective instability in the western boundary region
followed by an absolute instability in the interior, and hence a
spatial amplification locked into a temporally growing mode.
The admissibility of the two instabilities, together with the
allowance of an appropriate timing and order of occurrence,
forms constraints in configuring the model. We therefore
expect that an adequate set of parameters can be chosen
through stability analysis. Indeed, as one will see soon, the for-
midable parameter tuning process can be greatly reduced by
studying the dispersion properties of the convective and abso-
lute instabilities. In the following, the instability model is first
introduced, and then analyzed to identify the tunable parame-
ters that may affect significantly the forecast. This model is
put to application with the IFF93 data set. In section 3, the
data are briefly described (section 3.1); and substituted for the
background fields in the instability model (section 3.2) to yield
the dispersion relation and other instability properties as
needed (section 3.3). A definite set of parameters for the fore-
cast is accordingly determined; also determined are the re-
spective definition intervals of these parameters. The forecast
is reported in section 4; it is followed by a section of sensitiv-
ity studies (section 5). These two sections serve to verify the
analytical results of section 3. As an aside, section 6 investi-
gates the effect of taking in extra observational data. This
study is closed in section 7 with a brief conclusive discussion
of the issues that have been raised.

2. The Instability Model

[7] We will be using the Harvard Ocean Prediction Sys-
tem (HOPS) to illustrate the analysis and fulfill the forecast.

Figure 1. Topography of the Iceland-Faeroe front region
(depth in meters). Boxed on the map is the IFF93 experi-
ment domain. It is overlapped with a satellite image of the
surface temperature on 22 August 1993, which displays a
clear deep-sock or hammer-head meandering.
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To ensure the well-posedness of the problem and stabilize
the integration, the HOPS applies a Newtonian nudging on
each horizontal open boundary (see Appendix A and Loz-
ano et al. [1994]). The boundary conditions are thence not
felt by the interior points immediately. They are relaxed to
the interior values within a spatial distance and a time pe-
riod. This boundary nudging reduces possible mismatches
in the conditions that are specified and then a longer inte-
gration may be attained. We hence consider the primitive
equations with Newtonian damping:
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where r2 is the horizontal Laplacian, and the subscripts
T and M for the eddy viscosity/diffusivity stand for
‘‘tracer’’ and ‘‘momentum,’’ respectively. We are interested
in the growth from some equilibrium or mean state
u; v; �ð Þ, which is supposed to depend on (y, z) only (based

on the observation, usually v;wð Þ=u � O 1ð Þ when a west-
east aligning front is studied)

u; v; �ð Þ ¼ u; v; �ð Þ y; zð Þ:

(Note we are just studying for a certain section the possibil-
ity of instability and its corresponding stability structure,
not for the whole IFF configuration; in reality, the IFF
need not be zonally straight, and the C in the HOPS varies
with x, too.) The mean state variables are usually extracted
from a simulation. The pressure can be found by integrating
the hydrostatic equation:

P ¼ Pbottom þ
Z z

�H
��gð Þdz:

In many problems the bottom pressure Pbottom may be taken
as spatially invariant. This is actually what is done in a
reduced gravity model, where the infinite deep layer has a
constant pressure: with a finite flux, the infinite depth
implies a zero flow, and by geostrophy the pressure gradi-
ent must vanish. If, furthermore, the bottom is flat, we have

rP ¼ �g

Z z

�H
r�dz: ð6Þ

Of course the IFF region does not have a flat bottom. But
our purpose here is just for parameter estimation and, as we
will see soon, this approximation is good enough for the
frontal configuration.

[8] Now perturb the system from the mean state:

� ¼ � þ �0;
u ¼ u þ u0;
v ¼ v þ v0;
w ¼ w þ w0:

Linearizing, and observing that usually v;wð Þ=u � O 1ð Þ
when a west-east aligning front is studied, we get
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The diagnostic variable w can be obtained from the conti-
nuity equation, using the rigid-lid assumption (an assump-
tion adopted in the HOPS):
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[9] Considering a solution of the form
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These equations together with, for the time being, the sim-
ple zero-gradient conditions for both vertical and horizontal
boundaries :

@Au
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;
@Av

@z
;
@A�
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¼ 0 at z ¼ 0;�H ð16Þ

@Au

@y
;
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@y
;
@A�
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(equivalent to no heat and salinity fluxes across the surface
and bottom, and no wind forcing and no bottom friction)
form an eigenvalue problem. For a preliminary estimation,
the parameters in (13)–(15) for the momentum and density
equations may be treated as the same. That is to say, we
may let KT¼KM¼K, �T¼ �M¼ �, and CT¼CM¼C. This
way i!þ k2 KþC is the eigenvalue of the system and thus
the problem can be solved easily.

[10] We have the following observations on the eigen-
system (13)–(15): (1) the Newtonian damping C appears in
tandem with i! and hence inhibits the growth of disturban-
ces; (2) dissipation/diffusion K inhibits temporally growing
modes, as for real k, k2 is always positive, and hence k2 K
somewhat functions like C, albeit not identical (since k also
appears on the right hand sides of the equations) ; 3. when
spatial growth is considered, i.e., when k is complex, it
might be possible that k2 K turns negative, and hence facili-
tates perturbation growth. Of course, this is possible only
when K is huge.

[11] Notice that the sign change of the growth rate
Re{i!}¼�!i entails a qualitative change of the flow, from
unstable to stable or the opposite. Thus, the damping coeffi-
cient C is very critical ; it may give rise to a fundamental
change of the dynamics of the model. The eddy dissipation/
diffusion in the momentum or tracer equations is usually
small in comparison to other terms. For a length scale of 25
km, and a K typical for the IFF region, the horizontal
Ekman number is of the order of 10�3. The vertical Ekman
number is also of the same order. The instability hypothe-
sized in (3) is therefore almost impossible for the above
system made of momentum and tracer equations, where K
plays a very limited role. However, things may be quite dif-

ferent if the vorticity equation is considered, where dissipa-
tion carries much more weight in the budget. Held et al.
[1986] and DelSole [1997] have found that dissipation may
indeed trigger absolute instability. We will see such an
example later in section 5.

3. Instability Analysis and Parameter Setting
with the IFF Variability

3.1. Observational and Gridded Data

[12] The IFF93 data set was acquired from the R/V Alli-
ance cruise in a rectangular domain centered at 64.25�N,
10.75�W (Figure 1), with a zonal extent of 140 km and a
meridional extent of 190 km. The cruise began on 14 Au-
gust 1993, and lasted to 23 August. During the 10 day pe-
riod three surveys were conducted. They are, as named for
convenience by Robinson et al. [1996], the initialization
survey (14–16 August), the zigzag survey (18–20 August),
and the validation survey (20–23 August). The initializa-
tion and validation surveys are intended for the forecast ini-
tialization and validation, respectively. The zigzag survey,
which earns its name from its zigzag cruise track, samples
adaptively the domain to glean more close-up information

Figure 2. OA maps of the observed 25 m level temperature on the mesh grid for (left) 15 August 15,
(middle) 19 August, and (right) 22 August 1993, corresponding to the initialization, zigzag, and valida-
tion surveys, respectively. In the middle figure, only regions within tolerable errors (25% of the maximal
variance) are shown. All the units are in �C.

Figure 3. The nondimensionalized observational error of
the temperatures (scaled by its maximal value) for (a) 15
August and (b) 19 August. The contour interval is 0.1.
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about the meandering stream in the vicinity of the frontal
axis.

[13] The obtained data are quality-controlled and prepro-
cessed for the forecasting; for details, refer to Robinson et
al. [1996]. They are mapped onto an Arakawa B-grid [Ara-
kawa and Lamb, 1977] which we have used in Liang and
Robinson [2004]. It has a domain horizontally discretized
into 56 � 76 mesh boxes (57 � 77 grid points), with an
equidistant spacing Dx¼Dy¼ 2.5 km. Vertically a hybrid
coordinate system is used. Above a depth Hc¼ 150 m, the
grid has kc¼ 5 flat or z levels ; below are four terrain-
following or � levels. The thicknesses of the resulting verti-
cal boxes are, from top to bottom, 15, 20, 25, 40, 50, 78,
156, 224, and 312 m (the last four are for reference).
Accordingly, the top five z levels are at, respectively, 7.5,
25, 47.5, 80, and 125 m.

[14] The objective analysis, or OA for short, is used to
map the data onto the grid. In this study, we use the two-
stage OA proposed by Lozano et al. [1996] to fulfill the
analysis. Shown in Figure 2 are the OAed temperatures for
the initialization survey (centered on 15 August), zigzag
survey (19 August), and validation survey (22 August),
which are generally the same as those of Robinson et al.
[1996]. Clearly, the three surveys have captured the snap-
shots of a cold tongue intrusion across the front in the mid-
dle of the domain during the experiment. The meandering
process by observation can be briefly summarized as a
straightening toward the southeast on 19 August, followed
by a sudden meandering in a deep-sock or hammer-head
form on 22 August (cf. the inserted satellite image in
Figure 1). These OAed fields, together with the associated
error fields (Figure 3), are to be used later for data assimila-
tion and validation. Note that in computing the errors, it
has been assumed that the variability scales are larger than
the spacing between cruise station locations; the small
scale features shown in the satellite image in Figure 1 are
not considered here.

3.2. Instability Analysis With the IFF Model

[15] The instability model (13)–(15) is set up with the
gridded data. By the result of Liang and Robinson [2004],
the convective instability initially takes place near the west-
ern boundary, which introduces disturbances into the inte-
rior. Naturally, it would be convenient to choose from the
OAed observational data a section along the western
boundary as the basic profile. But these data before assimi-
lated into the model may not be consistent with all of the
model dynamics. We hence instead use the nowcast data
just after the initialization on 16 August, i.e., the flow with
all the initial data assimilated (see section 4). The parame-
ters needed for the nowcast can be chosen rather freely at
this stage; it will be fine provided that they appear reasona-
ble, and the resulting profiles are essentially the same.
Since the conditions are persistent at the inflow boundaries
(cf. section 4), the profile at the western boundary pre-
cludes the possibility of instability (the growth rate is
always zero or negative) ; besides, the hydrocasts are not
exactly at the boundary (about three grid points inside). We
hence choose a north-south section three grid points to the
east (i.e., section I¼ 3). The so-obtained density and veloc-
ity profiles are shown in Figure 4.

[16] For simplicity, only the depths above 300 m are
considered. This is justified by the observation that the
along-front flow is mainly above 250 m (cf. 4). Likewise,
the points beyond the meridional extent J¼ 15–64 are dis-
carded to avoid the effects from the northern and southern
open boundaries, Ideally, (13)–(15) should be discretized
on the same grid as above (with a sigma-coordinate in the
vertical direction). But the main purpose of this instability
analysis is for parameter estimation; we are seeking an
estimate, not an accurate determination, of the parameters.
So the more simple the instability model, the better. We
hence discretize the equations on Cartesian coordinates,
with the vertical depths at 7.5, 25, 47.5, 80, 125, 200, and
300 m, respectively. Note the top five depths are precisely
the same as those for the forecast model.

[17] There are three groups of parameters to tune in
equations (13)–(15): Newtonian damping coefficient, verti-
cal viscosity/diffusivity, and horizontal viscosity/diffusiv-
ity. If those, respectively, in the tracer and momentum
equations are counted as one, they become three parame-
ters, written C, �, and K. In the HOPS, they correspond to
boundary and temporal relaxations, eddy viscosity/diffusiv-
ity, and Shapiro filtering; in total there are six parameters
for the momentum equations and another six for the tracer
equations. The Newtonian damping coefficient
CM¼CT¼C always appears in tandem with the growth
rate, and they may be viewed as a whole in the dispersion
relation. The vertical viscosity/diffusivity �T¼ �M¼ �
essentially has no visible effect on the instability structure,
as estimated in the preceding section. (We have tested this,

Figure 4. Basic profile for the instability analysis. Upper:
density anomaly (in kg/m3); lower: zonal velocity (in m/s).
The abscissa J is the y grid index.

Table 1. Effective Eddy Viscosities (in m2/s) for Different Wave-
lengths and Filter Triplets

Wavelength 25 km 35 km 50 km 100 km 150 km

(pqr) : (211) 415 215 106 26 11
(pqr) : (221) 828 429 212 53 23
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and it is indeed true.) Here it is simply set to be 5 � 10�4

m2/s. The only parameter that merits mentioning is KM/KT,
namely, the horizontal eddy viscosity/diffusivity. In HOPS,
the eddy dissipation and diffusion are parameterized using
Shapiro filters [Shapiro, 1971]. A Shapiro filter is repre-
sented by a triplet (p, q, r), where p is the filter order, q the
frequency of applications per time step, and r the number
of time steps between applications, The equivalence
between Shapiro filtering and Laplacian diffusion can be
demonstrated with a single wave with wave number �. In
this case, a Shapiro filter with a parametric triplet (p, q, r),
i.e., a combination of filter order, frequency of application,
and number of time steps between applications, has an
equivalent effect as an effective eddy diffusion with diffu-
sivity [Lermusiaux, 1997, p. 136; Lermusiaux, 1999]

K ¼ 1� 1� spð Þq=2r
h iK0

4s
;

where K0 ¼ Dxð Þ2=Dt, s ¼ sin2 �dx=2ð Þ. In our model,
Dx¼ 2500 m, Dt¼ 180 s. Choose two triplets (p, q, r)¼ (2,
1, 1) and (2, 2, 1). The resulting effective eddy viscosities
(in m2/s) for different wavelengths are tabulated in Table 1.
Here r¼ 1 is a natural choice; p is set to be 2 because
higher order filters (like p¼ 4) blow up the integration. (In
fact, for a scale of 25 km, a filter (4, 1, 1) gives an effective
viscosity only 3.7 m2/s, in contrast to the 415 m2/s as
shown above when p¼ 2.) Previously Hansen and Meincke
[1979] and Willebrand and Meincke [1980] estimated that
K¼ 300 m2/s. This corresponds to our result for a wave-
length of 30 km when a filter (2, 1, 1) is adopted. Since K
varies with wavelength, in the following we test several dif-
ferent cases: K¼ 500, K¼ 300, K¼ 100, and an extreme
case K¼ 10 (all in m2/s).

[18] First choose the well-accepted case, K¼ 300, and
solve the corresponding system (13)–(15) for eigenvalues.
The dispersion relation we will be plotting is that for i!þC
versus k¼ krþ iki. We are particularly concerned about

Re i!þ Cf g ¼ Re i!f g þ C ¼ �!i þ C

because Re{i!} is the growth rate of the system. Figure 5a
shows the variation of Re{i!þC} versus the real wave
number kr. The maximum 2.61 � 10�7 s�1 is also the max-
imum attainable for growing modes. Denote this quantity
as Rmax. The maximal growth rate is thence Rmax�C. In the
complex plane kr� ki the saddle point(s) of the Re{i!þC}
contour lines can be identified; from Figure 5b it is with
the contour of 2.39 � 10�7. This corresponds to the abso-
lute instability, as proved by Briggs [1964] [see Huerre and
Monkewitz, 1990]. For convenience, this quantity is
denoted as Rabs.

[19] Next consider the other two cases. When K¼ 500,
the dispersion relation bears a similar structure as that for
K¼ 300, but with smaller growth rates : Rmax ¼ 2:42�
10�7 and Rabs ¼ 2:37� 10�7. Likewise, if K is decreased
to 100, same thing happens but with larger growth rates
(Rmax ¼ 3:83� 10�7, Rabs ¼ 3:6� 10�7). But if K is made
very small, drastic change may take place. When K¼ 10,

Figure 5. The dispersion relation for K¼ 100 m2/s. (a) Re{i!þC} versus kr. (b) The saddle point in
the complex k plane, where absolute instability takes place.

Figure 6. The dispersion relation for K¼ 10 m2/s. (top)
Re{i!þC} versus kr. (bottom) The saddle points in the
kr� ki plane, where absolute instabilities take place.
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we see from Figure 6 that there are actually two saddle
points. The left one corresponds to the contour line 1:10�
10�6s�1 (solid), the right to 9:50� 10�7s�1 (dashed). In
this case, we need only consider the former, i.e., the larger,
which corresponds to the most unstable modes. That is to
say, Rabs ¼ 1:1� 10�6s�1. From these results, all the
growth rates are of the same order as those for K¼ 300 (in
fact, within 5 times in variation) and, as we will see soon in
the following, essentially do not make much difference for
our purpose of parameter setting. This is what one would
like to have, considering that K in this model is not a con-
stant, but depends on the scales of the underlying
process(es).

3.3. Parameter Setting

[20] The dispersion relation result, i.e., the growth rates
with �M ¼ �T ¼ 5� 10�4 m2=s and KM¼KT ¼ 300 m2/s,
determines how the � s and ds in the Newtonian damping
coefficient

CM ¼ CT ¼ C dð Þ ¼ 1

� s
e� d=dsð Þ2 ;

where d (in grid points) is the distance from the western
boundary, should be set. (Once again, here we are actually
looking for the stability properties of the front with a fixed
C ; we are not really taking C as a function of x.) First, at
the western boundary, i.e., at d¼ 0, the system must be sta-
ble, in consistency with the persistent boundary conditions
(until new data come in). We thence must have
Rmax � C 0ð Þ � 0, i.e., the maximal growth rate should be
less or equal to zero. This yields

Rmax �
1

� s
� 0;

which together with the requirement � s >�c for some
threshold �c from Appendix A forms a constraint for � s :

�c < � s �
1

Rmax
: ð18Þ

[21] For the interior points, we require that (1) the flow
is unstable in the western region; (2) the instability is con-
vective. Here the statements are definite except for ‘‘west-
ern region.’’ By what was shown before, the meandering is
formed from an instability introduced from upstream, so,
ideally, the ‘‘western region’’ should be at the western
boundary (i.e., d¼ 0). However, because of the persistent
inflow condition, it must be stable there. What about one
grid point inside? It might be an appropriate choice; the
only concern is still with the clamped boundary nearby. To
ask a system stable at d¼ 0 to lose its stability at d¼ 1
imposes too much shock, and make the numerical scheme
prone to divergence. For these reasons, we set d¼ 2 in
expressing the above statements. Statement (1) is, there-
fore, Rmax � C 2ð Þ � 0, or

Rmax �
1

� s
e� 2=dsð Þ2 > 0; ð19Þ

and statement (2) reads: Rabs � C 1ð Þ � 0, i.e.,

Rabs �
1

� s
e� 2=dsð Þ2 � 0: ð20Þ

Solving these two inequalities for ds, one obtains

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log � sRabsð Þ

p � ds <
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�log � sRmaxð Þ
p : ð21Þ

So actually the tuning of ds depends on � s and Rmax and
Rabs, the latter two being functions of u, �, K, and � (�
essentially makes no effect here).

[22] From the inequalities (18) and (21) we may set � s

and ds. Plug Rmax ¼ 2:61� 10�7 into (18) to get � s <
3:8� 106 s. This essentially sets no upper bound for � s (the
lower bound is �c), since in this case usually it is of an
order of several hours; otherwise the boundary effect will
never enter into the interior. We may therefore pick freely
a � s that sounds reasonable. Let � s¼ 12,000 s. Substitution
of Rmax ¼ 2:61� 10�7 and Rabs ¼ 2:39� 10�7 into (21)
gives

0:82 � ds < 0:83:

This is really remarkable, as it gives us an almost exact
value: ds¼ 0.82, while our estimation is just in an approxi-
mate sense! Indeed, as one will see soon, when
� s¼ 12,000, and a filter (2, 1, 1) is used, ds should be cho-
sen around 0.8 to get the best forecast.

[23] Of course, one may argue that, in forming the math-
ematical statements, d could be a number other than 2. This
is, indeed, a rather subjective issue. What we can say is,

Table 2. Model Parameters for the Standard Run

Parameters Value

Model Configuration and Mesh Grid
Grid 57 � 77 � 9
Mesh 140 km � 190 km
Time steps for velocity, tracer and

transport stream function
180 s

Horizontal grid spacing (Dx and Dy) 2.5 km
Vertical grid spacing
Horizontal levels 1–5 15, 20, 25, 40, 50 m

Sigma levels 6–9 (reference thicknesses) 78, 156, 224, 312 m
Shapiro Filters (p, q, r)
Velocity (2, 1, 1)
Tracer (2, 1, 1)
Vorticity (2, 2, 1)
Transport stream function No application
Boundary Relaxation
Spatial e-folding distance ds for

Velocity 0.7 grid point
Tracer 0.8 grid point

Temporal e-folding distance � s for
Velocity 12,000 s
Tracer 24,000 s

Friction Parameters
Vertical eddy viscosity �M 5 � 10�4 m2/s
Vertical eddy diffusivity �T 5 � 10�4 m2/s
Bottom drag coefficient 2.5 � 10�3
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since the convective instability is ushered from the west, in
forming statement (1), the closer to the western boundary,
the more physically reasonable. So in (19), d¼ 2 could be
the best. (As argued before, d should not be set 1 to avoid
shocking the system.) But it is not impossible that the insta-
bility frontier could be extended further inside to some
d¼m ; m can be determined by the lower bound of the typi-
cal scale in the region. In this case, statement (1) becomes

ds <
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�log � sRmaxð Þ
p :

From previous studies, e.g., Smart [1984], Willebrand and
Meincke [1980] and Allen et al. [1994], to name a few, the
scale could be as small as 10 km, which results in m¼ 4.

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log � sRmaxð Þ
p is thus the upper bound for ds, given � s and the

growth rates. To obtain the lower bound for ds, consider
d¼ 1. As mentioned above, we cannot impose here the
instability requirement, i.e., statement (1). The system
might be stable or unstable. Nonetheless, one thing is for
certain, it must NOT be absolutely unstable (i.e., only con-
vective stability is allowed), otherwise it would give a pre-
mature intrusion. That is to say, Rabs � C 1ð Þ � 0, or

Rabs �
1

� s
e� 1=dsð Þ2 � 0:

These put together yield,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log � sRabsð Þ

p � ds <
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�log � sRmaxð Þ
p ; ð22Þ

where m¼ 4 in this study. This may be understood as an
estimate of the range of sensitivity for ds, given � s and the
growth rates. Substituting for the above numbers, this is
(0.41, 1.66). Later on in section 5, one will obtain an ap-
proximate range of (0.5, 1.5) by sensitivity studies. Again,
this is a remarkably accurate estimate,

[24] If � s is doubled to 24,000, (22) becomes
0:44 � ds < 1:78. When � s¼ 5000 and 50,000, the ranges
are, respectively, [0.39, 1.56) and [0.48, 1.92). So we may
choose � s rather freely between 5000 and 50,000, and the
resulting ds will not make much difference. Since Rmax and

Rab appear in the inequality in a product with � s, it is
expected that the change of K will not make much differ-
ence in ds, either. Indeed this is true. For the cases K¼ 10
and K¼ 500, the resulting Rmax and Rabs will, by calcula-
tion, give similar constraints.

[25] To summarize, the vertical mixing parameter �
essentially has very little effect on the dynamics. The tem-
poral e-folding time � s can be chosen rather freely between
5000 and 50,000. The effect of filtering is not significant,
either, and one may choose a triplet such as (2, 1, 1) or (2,
2, 1). A dynamically consistent spatial e-folding distance ds

is constrained by (22), which depends on � s and the filter
adopted. A more stringent constraint is (21), which, for
� s¼ 12,000 (in seconds), gives a rather accurate estimate of
ds around 0.8 (in grid points). Since in the HOPS there is
another equation namely the barotropic vorticity equation
to solve, and by experimentation it requires some extra fil-
tering to ensure numerical stability, the ds for momentum is
lowered slightly to 0.7 by compensation. Considering that
tracers usually respond more slowly to perturbations than
velocity fields, the � s for the former is doubled. As a sum-
mary these and other parameters are listed in Table 2.

4. Forecasting the IFF Large Meandering

[26] With the above parameters we perform the forecast.
The forecasting strategy, including initialization, sequential
data updating, etc., is referred to Robinson et al. [1996].
For reference convenience, 14 August may be referred to
as day 0, 15 August as day 1, and so on. As the first step,

Figure 7. F2 forecast of the 25 m temperature for day 2 (16 August), day 5 (19 August), and day 8 (22
August).

Table 3. F2 Forecast Skill Versus Persistence (Assimilating 16
August/Predicting 22 August)

Level ACC Change RMSE

7.5 m þ0.206 �14.0%
25 m þ0.171 �2.5%
47.5 m �0.036 þ21.7%
80 m �0.062 þ32.1%
125 m þ0.033 �1.5%
�6 þ0.108 �31.6%
�7 þ0.014 �47.8%
�8 þ0.012 �45.3%
�9 0 �15.8%
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only the data from the initialization survey (day 0 through
day 2) are utilized for the forecast. We will call this the F2
forecast henceforth, adopting a convention used before by
Robinson et al. [1996]. The zigzag data will be dealt with
later in section 6, and the corresponding forecast will be
termed the F5 forecast.

4.1. The F2 Forecast Result

[27] The F2 forecast result is shown in Figure 7, where
three snapshots of the 25 m temperature are plotted, in cor-
respondence to that of Figure 2. The nowcast for day 2
reveals a front running wavely east-westward between
approximately J¼ 35 and J¼ 45. Its strength decreases
from west to east, with a like structure and position
throughout the water column. In the upper layer, two warm
centers sitting immediately south of the front; in deep
layers, this bicenter structure gives way to a sole strong
warm center in the west (not shown).

[28] On day 5, the western frontal axis is reoriented and
becomes straightened southeastward. Accompanied is a

strong current toward the southeast. This event has been
captured by the model throughout the water column, and is
particularly evident on the surface and middle levels. The
warm centers identified south of the front on the day 2 pat-
terns show a clear evolution. At depth 25 m, the one in the
west disappears; at depth 300 m, the unicenter evolves into
a dipole structure (not shown). This evolutionary trend is
clearly seen in the OA maps in Figure 2. The dynamical
processes have been qualitatively correctly reproduced in
the day 5 forecast.

[29] The day 8 forecast is the target of this study. Com-
paring the temperature distribution of Figure 7 to that of
Figure 2, the predicted meander is correlated well to the ob-
servation, both in spatial location and in geometry. Particu-
larly appealing is the way the meander is oriented. The
cold water intrudes westward, in good agreement with both
the satellite image (cf. 1) and the in-water observation.
Besides, some indication of scale-similarity, which is
lacked in the OA maps (Figure 2) because of the sampling
resolution but is present in the AVHRR image (Figure 1),

Table 4. A Few Experiments Mentioned in the Text

Run

Filtering Boundary Relaxation Frc

RemarksMomentum Tracer Vorticity Momentum Tracer �M, �T (cm2/s)

1 (211) (211) (221) (0.7, 12,000) (0.8, 24,000) 5, 5 Standard experiment
2 (211) (211) (221) (0.7, 12,000) (0.8, 24,000) 0.5, 0.5 Similar to Run 1
3 (211) (211) (221) (0.7, 12,000) (0.8, 24,000) 15, 15 Similar to Run 1
4 (411) (411) (421) (0.7, 12,000) (0.8, 24,000) 5, 5 Blows up
5 (212) (212) (211) (0.7, 12,000) (0.8, 24,000) 5, 5 Blows up
6 (221) (221) (221) (0.7, 12,000) (0.8, 24,000) 5, 5 As Run 1 but with small-scale features smoothed
7 (241) (241) (221) (0.7, 12,000) (0.8, 24,000) 5, 5 Same as above
8 (241) (241) (241) (0.7, 12,000) (0.8, 24,000) 5, 5 Result very different
9 (221) (221) (241) (0.7, 12,000) (0.8, 24,000) 5, 5 Integration blows up
10 (211) (211) (221) (1.5, 12,000) (1.5, 24,000) 5, 5 Meander okay, but for geometry
11 (211) (211) (221) (3, 12,000) (3, 24,000) 5, 5 No deep-sock meandering (cf. Figure 8b).
12 (211) (211) (221) (0.4, 12,000) (0.4, 12,000) 5, 5 Blows up
13 (211) (211) (221) (0.7, 50,000) (0.8, 50,000) 5, 5 Similar to Run 1
14 (211) (211) (221) (0.7, 7500) (0.8, 7500) 5, 5 Similar to Run 1

Figure 8. The 25 m temperature on day 8 (22 August) predicted (a) with Shapiro filters (2, 4, 1), (2, 4,
1), (2, 4, 1), respectively, for momentum, tracer, and vorticity equations, and (b) with a boundary relaxa-
tion ds¼ 3 points for both momentum and tracer equations.
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is significant in the details of the meandering shape; the
cooler tongue intrusion from the northwestern corner,
which is seen in the satellite image but not in the OA map
because of the sampling resolution, is also clearly seen
here.

[30] The inaccuracies of the forecast are also easily seen.
On 19 August, the strength and extent of the front straight-
ening are not enough. The slope is too mild to be quantita-
tively comparable to that of Figure 2. Also not enough is
the cross-front temperature gradient. A direct consequence
is that the along-front current is too small. The maximal
speed along the front axis is 69 cm/s (figure not shown),
about 10 cm/s less than the 79 cm/s inferred from the sur-
face drifters [Miller et al., 1995a, 1995b]. Apart from that,
two cold centers in the east on 16 August persist through
the experiment, an event not seen in the OA sequence.
Obviously, this is due to the persistent boundary conditions
that cannot be resolved unless new data come in. On 22
August, the predicted meander lies too much eastward; the
front is not strong enough on the western flank; the iso-
lines, particularly the 9�C isoline, do not crest up much to
make a round shaped hot center immediately west of the
meandering. Besides, the predicted meandering intrusion
slightly lies to the north, a problem which could result from
the mild day 5 straightening, and should be alleviated by
assimilating the zigzag data (cf. section 6).

[31] It would be interesting to give the forecast a quanti-
tative evaluation. As discussed in the literature [Peloquin,
1992, cf. the special issue of Oceanography 1992 edited by
R. A. Peloquin], the mesoscale forecast skill may be meas-
ured by anomaly correlation coefficient (ACC) and root-
mean-square error (RMSE):

ACC ¼ T 0 pT 0 o

T 02p T 02o

� �1=2
;

RMSE ¼ Tp � To

� �2
1=2

versus persistence. In these equations, overline stands for
an averaging over some designated space domain, prime

for deviation from the average, and the subscript p and o
for ‘‘prediction’’ and ‘‘observation,’’ respectively. In this
study, the scalar field T is temperature, and by ‘‘observa-
tion’’ we mean the data mapped with OA into the mesh
grid. Clearly, a high forecast skill must have a high ACC
and a low RMSE. One may then use the ACC and RMSE
of forecast versus the ACC and RMSE of persistence to
score the forecast skill. Table 3 lists the calculated forecast
skills against persistence for the validation domain (a rec-
tangle 11.6–9.9�W, 63.8–64.5�N). From the numbers one
can tell that the ACC for all the levels are increased, except
for levels 3 and 4, and the � level 9. Correspondingly, the
RMSE drops at all levels, except for levels 3 and 4. The
ACC changes most drastically at the surface levels (levels
1 and 2), but the largest RMSE decreasing happens in deep
layers (sigma levels 6, 7, and 8). Taking all these into
account, levels 1 and 6 (sigma) score the highest, and levels
2, 7, and 8 the second. Through the water column only lev-
els 3 and 4 do not score as expected.

[32] In summary, the F2 forecast has faithfully repro-
duced the processes for the IFF to evolve into an almost
detached meandering. By visual inspection, the two major
events, the southeastward straightening, and the deep-sock
meander intrusion, have been satisfactorily predicted, either
in terms of strength, geometry, and orientation. The predic-
tion has also been quantitatively scored in terms of ACC
and RMSE against persistence, and the score is generally
satisfactory, particularly for the surface and deep levels.

5. Sensitivity Studies

[33] As shown above, a faithful reproduction of the two
phases of a baroclinic instability, i.e., the convective insta-
bility and the absolute instability, and the timing of the
phase switch, is crucial in forecasting the observed IFF
meandering intrusion. We have conducted over 90 experi-
ments to test the F2 forecast against parametric sensitivity;
these sensitivity studies have further confirmed this rule of
thumb. This section summarizes briefly the major results of
these studies. A few experiments mentioned in the text are
listed in Table 4, among which the first is the one described
above, i.e., the standard run.

5.1. Vertical Viscosity and Diffusivity

[34] In section 2, we conjectured through a preliminary
estimation that the two vertical mixing parameters, �M and
�T, may not exert much effect on the instability structure
and hence the meandering intrusion. Indeed this is true. In
the standard run, they are both chosen as �M¼ �T¼ 5 cm2/
s. Reducing the value by more than an order to 0.5 cm2/s
yields a result without any visible difference (run 2 in
Table 4); on the other hand, incrementing it to 15 cm2/s
does not affect the outcome, either (run 3). The forecast is
therefore insensitive to the changes of vertical eddy viscos-
ity and diffusivity within their respective bounds.

5.2. Filtering

[35] In the HOPS, Shapiro filters are employed, for one
thing, to ensure numerical stability and, for another, to
parameterize the subgrid processes of the horizontal mix-
ing. The triplet for the above standard run is by experiment
an optimal one. As shown in Table 4, higher order (run 4)
or less (run 5) filtering causes energy to build up at the grid

Figure 9. The large-scale temperature distribution recon-
structed with (a) observation, and (b) model prediction for
the fifth forecast day. A window index j0¼ 1 is used for the
2-D cubic spline scaling basis [Liang and Anderson, 2007].
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scale which eventually blows up the integration. To test the
sensitivity, a vast variety of runs have been performed with
different triplets. Generally, once the scheme is stabilized,
the mesoscale meandering is insensitive to the change of
(p, q, r) for the momentum and tracer equations, just as
estimated in section 2. Changing run 1 to run 7, the applica-
tion frequency q is increased from 1 to 4, correspondingly
the effective viscosity is increased from 400 to 1600 m2/s
for of 25 km waves, and from 20 to 100 m2/s for 100 km
waves. The results, however, are essentially the same, only
with the small-scale features smoothed out.

[36] Besides the momentum and tracer equations, the
HOPS has an additional vorticity equation to solve for the
barotropic fields [see Lozano et al., 1996]; the resulting
barotropic vorticity is inverted to obtain the transport
stream function, barotropic pressure, etc. Shapiro filters are
also employed to parameterize the subgrid processes. Dif-
ferent from the above tests with momentum and tracer,
here if the application frequency q is increased from 2 to 4,
dramatic change is seen in the final result (runs 8 and 9 ver-
sus runs 6 and 7). Shown in Figure 8a is the predicted 25 m
temperature for day 8 using the filters in run 8. Apparently,
the flow is very unstable near the western boundary, giving
to a pattern quite different from the prediction in the stand-
ard run. A deep study may be made by applying the new
mathematical machinery multiscale window transform
(MWT hereafter) of Liang and Anderson [2007] and the
MWT-based localized hydrodynamic stability analysis
[Liang and Robinson, 2007] to the forecast fields, following
what we did in Liang and Robinson [2004] and using the
same parameters therein. The instability problem is reduced
to the finding of a quantity called canonical transfer (previ-
ously called perfect transfer in Liang and Robinson [2007]),
which quantitatively gives the nonlinear growth rate local in
space and time. By examining the calculated canonical
transfer from the large-scale window (longer than 5 days) to
the mesoscale window (about 1–5 days) for day 4 and day 6,
we find that the transfer center stays still near the western
boundary (not shown). This is in contrast to what we have
observed in Liang and Robinson [2004, Figure 9], where the
hotspot has moved into the interior by day 6. The implica-
tion of this change is that in run 8 the stage of convective
instability is prematurely turned off before an absolute insta-
bility takes over. In other words, the heavy dissipation of
vorticity makes the system absolutely unstable near the
western boundary, which is otherwise convectively unsta-
ble. This spurious instability-caused grid-sized oscillations
near the western boundary cannot be damped out without
heavy momentum and tracer filterings, and that is the reason
why the integration in run 9 blows up.

[37] That dissipation may trigger absolute instability in a
flow which would be otherwise stable or convectively
unstable has been discovered before by Held et al. [1986]
and DelSole [1997]. The possibility is also seen from the
dispersion relation in section 2. But, as estimated there and
demonstrated above in the experiments, the eddy dissipa-
tion (resp. diffusion) for the momentum (resp. tracer) equa-
tions (within physically reasonable bounds, of course) is
not strong enough to make a sizable contribution to the dis-
persion relation. How come the vorticity dissipation func-
tions so differently? In the analytical instability model, we
avoid solving the vorticity equation for pressure or

pressure-related fields by assuming an inert deep layer. In
the hidden vorticity equation, only one term is planetary
vorticity-related, that is, the �-effect term, thank to the non-
divergent transport. Let us do a quick dimensional analysis.
Denote as �vor the eddy vorticity viscosity, and let � � U.
Then the �-effect is of the order of 10�11 U, while
�vorr2� � �vor U=L3. For a scale of 25 km, the effective
viscosity of filter (2, 4, 1) is about 1600 m2/s, resulting in a
vorticity dissipation of the order of 10�10 U, which is one
order larger than the �-effect! It is no doubt that this huge
dissipation may significantly alter the dispersion relation
and hence the stability structure.

[38] To summarize, filters for the momentum and tracer
equations generally tend to stabilize the integration, and
only function to damp small-scale features without chang-
ing the mesoscale meandering intrusion. But for the vortic-
ity equation, caution should be used in applying filters
because of the delicate balance between dissipation and
other mechanisms. Heavy filtering to the vorticity equation
may trigger a spurious absolute instability near the western
boundary, which results in a premature meandering and an
intrusion pattern completely different from that from the
standard run.

5.3. Boundary and Temporal Relaxations

[39] The nudging at the open boundaries, which is
designed to stabilize the numerical scheme, and to alleviate
the ill-posedness of the regional modeling problem, proves
to be a key factor that may shatter the stability structure of
the flow. We have demonstrated this in section 2, and given
a detailed discussion in section 3.3 on the determination of
the two related parameters, namely, ds and � s. This subsec-
tion is devoted to test the sensitivity against their changes.
Listed in Table 4 are five runs among the testing experi-
ments (runs 10–14).

[40] As discussed before, large ds tends to inhibit the bar-
oclinic instability and hence the meandering intrusion. Fix
� s (as that for run 1) and let ds increase. When ds¼ 1, the
result is essentially unchanged. When ds¼ 1.5 (run 10), the
resulting meandering is still fine, but shows discrepancy in
its shape. Further increase ds. After ds exceeds 2, the insta-
bility seems to be inhibited, and no deep-sock or hammer-
head meandering appears. Shown in Figure 8b is the pre-
dicted 25 m temperature for day 8, the result of run 11 with
ds¼ 3. On the other hand, decreasing ds to a value below
some threshold may yield the convective instability to a
premature absolute instability, and hence a premature
meandering intrusion. By the calculation in section 3.3 the
threshold is around 0.5. To test this, let ds¼ 0.5; the result
is still similar to that from the standard run. Reduce ds

more to 0.4 (run 12). This time, however, sees a divergent
integration. Nonetheless, the numerical divergence could
be related to a very unstable physical system, which to
some extent echoes our premature intrusion conjecture.
(Indeed the numerical divergence begins in the western
boundary region.)

[41] We have demonstrated in section 3.3 that, in con-
trast to ds, the prediction should be insensitive to the
change of � s. (This is, of course, due to the fact that ds

appears in the exponential power of the Newtonian damp-
ing coefficient, while � s does not.) Indeed this is true, as
shown in runs 13 and 14. Fix ds as that for run 1 and choose
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� s¼ 50,000 (run 13) and � s¼ 7500 (run 14), and the predic-
tions essentially show no difference from the standard run.
We may, therefore, safely claim that the F2 forecast is
insensitive to the choices of ds and � s, provided that they
are appropriately set so that the underlying physics is repre-
sented (e.g., 0:5 < ds < 1:5, 7500 < � s < 50; 000, plus the
constraint (22)).

6. Zigzag Data Assimilation and the F5 Forecast

[42] As one sees from the above, though qualitatively
successful in reproducing the meandering intrusion, quanti-
tatively there still exists some gap between the observation
and prediction. This is, to a large extent, due to a lack of
data input beyond day 2, and the resulting persistent bound-
ary conditions afterward. Here we show how the zigzag
data may come to help in this regard. This section might be
a little digression from the main flow; we include it here
for the completeness of the forecast. Besides, as we will
see soon, the experiments with data assimilation from
another aspect reconfirm the previous ‘‘rule of thumb.’’

[43] Before assimilated, the zigzag data are OAed onto
the grid on day 5 (19 August). The assimilation is achieved
through the classical pointwise optimal interpolation; in
the following we will refer to it as OI.

6.1. Two-Scale Data Assimilation

[44] The zigzag data set, which was acquired on 18–20
August, is distinct from the other two sets in that (1) a con-
siderable number of probes did not reach the bottom; (2) it
does not contain salinity information; (3) the hydrocasts
cover only a part of the domain (see the hydrocast map in
Robinson et al. [1996]).

[45] We overcome (1) by combining these casts with all
the hydrographic data available up to day 6 (20 August) to
prepare the assimilation fields, and remedy (2) by salting
the XBT casts, i.e., augmenting them with consistent salin-
ity information. Salting is now a common practice [e.g.,
Sloan, 1996] in data preparation. It is justified by the obser-
vation that temperature and salinity are more often than not
statistically highly correlated; a T-S diagram, for example,
often allows one property to be derived from the other. The

most severe problem arises with (3), which produces an in-
homogeneous error distribution, and then may give spuri-
ous structures in the fields after assimilation. In Appendix
B, we show how these structures arise using a highly
coarse-grained model.

[46] This above problem actually originates from the
classical optimal interpolation methodology. The scheme
is to minimize a performance or cost functional such
that the observed field and the model prediction as a
whole are combined into a new field. This does nothing
to distinguish features of one scale from another. If the
error field is not spatially uniform, as exemplified above,
spurious structures arise through interscale transfers. In
the present study, this problem could be severe, consid-
ering that the zigzag error is in a pattern like Figure 3b.
The multiscale issue, therefore, must be addressed in
devising an appropriate assimilation scheme for the F5
forecast.

[47] An in-depth study of multiscale assimilation is
beyond the scope of this study. To cope with the prob-
lem we just adopt a simple scheme, a scheme aiming at
reducing or removing the C in the example shown in
Appendix B (as the error field is not alterable). This is
achieved by removing the large-scale part of both the
model result and the observation. The two fields that are
to be melded are therefore the de-trended fields. After
the assimilation, the trend (of the model prediction) is
added back to get the updated field. In doing so, the
potentially spurious structure due to the discrepancy of
the predicted and observed large-scale features, if any,
is then effectively removed.

[48] The large-scale features, by which we mean here the
basin-scale trend, is obtained through reconstruction using a
2-D cubic spline scaling basis [Liang and Anderson, 2007],
with a spatial scale level index j0¼ 1. Figure 9 shows the
basin-scale distributions of both the predicted and observed
temperatures, T o and T p, for the forecast day 5 (19 August).
Notice the difference in value (about 0.5�C) albeit the pat-
tern as a whole is similar. This offset would lead to spurious
patterns with the zigzag observation errors, should these two
basin-scale features be involved in the optimal interpolation.
In fact, the thermal wind relation implies

Figure 10. F5 forecast temperature for day 5 (19 August) and day 8 (22 August).
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where 	 ¼ @�
@T, and H0 the reference depth of no motion.

The UNESCO equation of state for seawater [Millero et al.,
1980] yields an 	 	 �0.15 for the typical temperature and
salinity in this region. Take H0 to be 300 m. Substitution of
�0 � 1000 kg/m3, g � 10 m/s2, f0 � 10�4 1/s, Dx � 10 km,
DT � C � 0.5 �C into (23) gives a rough estimate of the
spurious surface velocity in the order of 0.2 m/s, or 20 cm/
s. The flow thus obtained may therefore bear a large error.
To overcome this problem, we subtract these basin-scale
features from the originals and then apply the pointwise OI
on the de-trended structures. Suppose the so-assimilated
field is T

0þ
p . The forecast temperature is then updated with

T
0þ
p þ T p.
[49] With this simple two-scale assimilation scheme is

the zigzag data assimilated. In order not to shock the sys-
tem, it is ramped up from day 4 (18 August) to day 5
(19 August), rather than applied at one time step. In these
two forecast days, the assimilation weight ! is increased
from 0.50 to 0.99 (!¼ 1 means 100% of the observation is
taken in).

6.2. The F5 Forecast Result

[50] The F5 result has been reported in Liang and Robin-
son [2004]; below till the next paragraph is just a brief

summary. Shown in Figure 10 is the resulting temperature
for depth 25 m. Clearly, the assimilation of the zigzag data
introduces many small-scale features, scattered on all levels
through the water column. These grid-size events are soon
dissipated, without affecting the large-scale evolution.
Compared to Figure 7, the nowcast on day 5 results in a
much steeper front, plus a cold center unseen in Figure 7 in
the southwestern corner.

[51] From the day 5 nowcast the front evolves on, and by
day 8 a deep-sock meandering intrusion forms (Figure 10,
right). As that of the F2 forecast, both the geometry and the
orientation of the intrusion are in good agreement with the
observation. Significant improvement since the F2 forecast
is also seen. In comparison to Figure 7, the front strength is
more realistic ; all the isolines of temperature on the west-
ern flank crest up, just as those observed; the intrusion is
farther southward; the high temperature pool on the west-
ern flank is faithfully reproduced. Besides, it successfully
predicts a cold spot in the southwestern region which does
not appear in the F2 forecast.

[52] Quantitatively one would expect that the F5 forecast
is also significantly improved. However, the above forecast
skill metric does not seem to record the improvement. For
a better evaluation the metric need to be modified. This is
done by correcting the phase of variation for each level
before the ACC and RMSE are calculated [Robinson et al.,
1996]; that is to say, we check the agreements except for
that in phase. Here we simply have the predicted tempera-
ture lag in the x direction by some distance (westward).
The lag is on a level-by-level basis. For all those well pre-
dicted, no lag is necessary; others like levels 1 and 2, a
slightly more lag is needed. The lag distribution is summar-
ized in Table 5 (second column), with grid spacing as the
unit. The recalculated ACC and RMSE are shown on the
right in the same table. Obviously, the F5 forecast has a
high forecast skill score.

[53] We extend the evaluation to times other than day 8
(22 August). Plotted in Figure 11 are the time sequences of
the ACC and RMSE for level 4, the very successfully F5
forecast level and the least successful F2 forecast level,
from day 5 (19 August) to day 9 (23 August). The dashed
lines signify persistence. Both the ACC and RMSE evolu-
tions indicate that the forecast scores highest on day 8, the

Figure 11. (left) ACC and (right) RMSE for the F5 forecast (solid) versus persistence (dashed).

Table 5. Spatially Lagged F5 Forecast Skill Versus Persistence
(Assimilating 16 August/Predicting 22 August)a

Level Spatial Lag ACC Change RMSE

7.5 m 4 points þ0.176 �29.2%
25 m 4 points þ0.193 �31.1%
47.5 m 0 points þ0.173 �31.7%
80 m 0 points þ0.189 �32.4%
125 m 2 points þ0.150 �25.6%
�6 3 points þ0.124 �23.4%
�7 6 points þ0.119 �36.2%
�8 6 points þ0.173 �50.8%
�9 2 points þ0.228 �52.8%

aThe spatial lag is in x (positive if moved westward).
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time when the deep-sock or hammer-head meander
matures. After that, the score drops. By Miller et al.
[1995b], this kind of variation in ACC and RMSE provides
a clue of predictability of the problem. By all that account,
the forecast skill scores are high for all levels; the results
are highly relevant to the observations. Our simulation is
therefore satisfactorily validated.

[54] It is of interest to see how the F5 forecast is
improved compared to F2 in terms of the underlying dy-
namics. Applying the MWT of Liang and Anderson [2007]
and the MWT-based canonical transfer analysis [Liang and
Robinson, 2007, 2009], using the same parameters as those
in Liang and Robinson [2004], to both the F2 and F5 fields,
we find, from the evolution of the resulting canonical trans-
fers (not shown), that the F2 forecast has reproduced the
whole scenario of the baroclinic instability, which appears
first as a convective instability, then an absolute instability.
Compared to that of the F5 forecast, however, the F2 con-
vective instability is delayed, and both the convective and
absolute instabilities are too weak to produce a meandering
strong enough as observed. The assimilation of the zigzag
data improves the forecast through advancing and strength-
ening the convective instability, and enhancing the absolute
instability that follows.

6.3. A Remark on Data Assimilation Versus
Dynamical Processes

[55] The success of the F5 forecast seems to demonstrate
that taking in more data will improve the prediction. This
is, of course, a common belief, but it is only conditionally
true. The first issue is the way how the data are assimilated.
We have tested more than 20 experimental runs with differ-
ent zigzag data assimilation schemes, including schemes
without multiscale consideration and schemes with ramp-
up and ramp-down strategies before and after day 5. The
results are quite different, and are generally not as success-
ful as the F2. That is to say, if the zigzag data are not
quality-controlled, and/or not appropriately assimilated,
they may not improve the forecast or, in many cases, even
make things worse.

[56] A more profound issue usually ignored is with the
dynamical processes we emphasized in the beginning. If a
model setting does not admit the process(es) that is (are)
needed in producing the target phenomenon, in general it is
futile for the prediction. In this study, the key process is the
convective instability followed by an absolute instability.
We test two cases: (1) no linear instability is admissible;
(2) the instability at the western boundary is absolute.
According to sections 3.3 and 5, a choice of ds¼ 3 and
� s¼ 12,000 inhibits the linear instability. With this set of
parameters, we relaunch the F5 forecast, using the standard
assimilation scheme. As expected, on the resulting 22 Au-
gust temperature distribution no deep-sock or hammer-

head meandering intrusion appears (figure not shown). To
test the second case, one may choose ds¼ 0.4, an e-folding
distance below the threshold for absolute instability, but
the integration blows up, as in the F2 forecast. We then test
with the parameter combination for Figure 8a, where an
unexpected absolute instability is triggered by the heavy fil-
tering. Again, the resulting day 8 temperature distribution
sees no improvement in comparison with that in Figure 8a.
Apparently, data may not always come to help, unless the
physics is correctly represented in the model.

7. Discussion

[57] To set up a model such that the underlying physics
for the targeting phenomenon is faithfully represented is
the key to the success of ocean prediction. In the case of
the Iceland-Faeroe front (IFF), for example, dynamically it
has been observed to be a convective instability followed
by an absolute instability (both are baroclinic), and hence a
spatial noise-like amplifier locked into a temporally grow-
ing mode [Liang and Robinson, 2004]. A physically con-
sistent forecast of the meanderings, thereby, must have
these processes reproduced. In this study, we studied the
frontal instability properties, and identified the parametric
dependencies for the two instabilities, which allow for a
physically consistent setting of tunable model parameters.
This not only saves enormous (and tedious) effort of exper-
imentation, which is usually a formidable task in numerical
modeling, but also provides for us criteria to distinguish a
physically relevant forecast from numerical artifacts.

[58] We put the above criteria to application to the fore-
cast of the IFF large meandering observed on 22 August
1993. An instability model is set up with a basic profile of
the cross-front section drawn from the real-time data set.
By analyzing the model it is found that the convective/
absolute instability structure has a major dependency on
Newtonian damping, which takes effect jointly with
horizontal dissipation. The Newtonian damping-related pa-
rameters, i.e., the e-folding temporal relaxation time � s and
the e-folding relaxation distance ds (see Appendix A), are
hence the most critical parameters to tune. Solving the
instability model one obtains a maximal generalized
growth rate, i.e., growth rate plus the Newtonian damping
coefficient C, and a generalized absolute growth rate, writ-
ten Rmax and Rabs, respectively. Numerically one must have

�c < � s �
1

Rmax
;

where �c is from Appendix A, for a persistent inflow
boundary; from the computed Rmax this essentially sets no
upper bound for � s. Dynamically, the process underlying

Table 6. Critical Decay Times �c for Boundary Relaxation

acor Leap-Frog Euler

>0 2Dt 
 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2acor � 1ð Þ 2Dtfð Þ2

q
 ��1

Dt 
 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2acor � 1ð Þ Dtfð Þ2

q
 ��1

¼0 Dt 
 1� Dtf½ ��1 Dt 
 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dtfð Þ2

q
 ��1

LIANG AND ROBINSON: FORECASTING LARGE FRONTAL MEANDERINGS

5699



the IFF meandering is a convective instability in the west
followed by an absolute instability in the interior. That is
to say, (1) the flow is unstable in the western region; (2)
the instability is convective (not absolute). These two state-
ments yield a strong constraint (21) and a weak constraint
(22) for ds, which are rewritten here for easy reference:

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log � sRabsð Þ

p � ds <
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�log � sRmaxð Þ
p ;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log � sRabsð Þ

p � ds <
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�log � sRmaxð Þ
p :

Here m equals the length scale divided by the horizontal
model spacing; it is 4 for a scale of 10 km. For � s¼ 12,000
s, and the typical horizontal viscosity K¼ 300 m/s2, the for-
mer yields a ds around 0.82, and the latter determines its
range of variation: (0.41, 1.66). These turn out to be rather
accurate results. By sensitivity studies, they are, approxi-
mately, 0.8 and (0.5, 1.5). Through the instability analysis
it is also found that the model is not sensitive to change in
vertical mixing, and horizontal dissipation/diffusion for the
momentum and tracer equations. But too much dissipation
on the barotropic vorticity equation will result in a prema-
ture absolute instability in the western region, and hence a
meander intrusion way more upstream the front. Different
from dissipation, boundary and temporal relaxations are
purely engineering parameters; they must be reassessed
once the model setting is changed. But given a basic profile
u; �ð Þ, and a horizontal viscosity K, they can be easily

identified by the above constraints.
[59] The forecast was conducted in an operational mode

using the Harvard Ocean Prediction System (HOPS) on a
hybrid coordinate frame. Prognostic fields were sequen-
tially updated by data acquired on board R/V Alliance,
whenever available, with a two-scale data assimilation
strategy. The events reproduced during the experimental
period (14–23 August 1993) include the straightening of
the curved frontal axis on 19 August, and the formation of
a hammer-head meandering intrusion as mentioned above.
They are validated, both qualitatively and quantitatively
with those observed from the zigzag survey (18–20 August)
and the validation survey (20–23 August). The forecast
skill score is high, as evaluated against persistence, in terms
of anomaly correlation coefficient and root-mean-square
error.

[60] The belief that taking in more data will improve the
forecast need not always be true. In the IFF case, if the pa-
rameters are set so as to have the convective and/or absolute
instabilities precluded or not occurred in order, assimilation
of the zigzag data does not help. But, on the other hand, if
the model setting admits these processes with appropriate
timing and order of occurrence, the information extracted
from the zigzag survey does increase the predictability and
hence the forecast skill. From a dynamical point of view, the
forecast without taking in the zigzag data has reproduced the
whole scenario of the baroclinic instability, which appears
first in the form of a convective instability, then switched to
an absolute instability. The deficiency is that the convective
instability is delayed, and both the convective instability and
the absolute instability are too weak to yield a meandering

intrusion strong enough as observed. The success of the fore-
cast with the zigzag data implies that the assimilation has
advanced the convective instability, and has enhanced it
both in strength and influence regime. The absolute instabil-
ity that follows is also greatly enhanced.

[61] The zigzag data assimilation raises a severe issue
about the accuracy in field updating: in the presence of spa-
tial error inhomogeneity, large-scale prediction-observation
discrepancy may introduce a spurious structure into the
posterior fields. (In the present study, this structure may
give rise to a spurious buoyancy flow as large as 60 cm/s.)
This issue is deeply rooted in the physical processes them-
selves. In a system with multiscale processes involved, the
error field, if not manipulated correctly, may be transferred
as an eddy energy across the scale window, leading to a
spurious large-scale structure. Clearly, the problem essen-
tially cannot be alleviated just by sophisticating the classi-
cal optimization scheme. We need to control over the
dynamical as well as the statistical mismatch between the
numerical prediction and the observation. In this study, it is
fortunate that the large-scale distributions are similar in
structure, with roughly a constant in difference; as a result
the problem can be fixed using a two-scale window decom-
position. In general, a formalism with multiscale considera-
tion may be needed.

[62] From our previous experience with parameter tuning,
it is natural to hypothesize that the same rule of thumb must
also be obeyed when taking in new data. That is to say, data
assimilation must not hurt the fundamental dynamical proc-
ess(es) underlying the target phenomenon. This should form
a constraint in designing an assimilation scheme, which, in a
traditional sense, only optimizes the error of the numerics. It
is not uncommon that, after updating with new data, the path
in the phase space of the corresponding dynamical system is
changed. How to have the path kept on the right track, i.e., a
dynamically consistent track, after the fields are updated
with new data, should be taken into consideration in forming
the objective functional. We are therefore working on this
kind of data assimilation scheme.

[63] All in all, we have shown through an example that
dynamical consistency is of top priority in ocean modeling
and simulation. In the case of a highly variable frontal intru-
sion, namely, the IFF meandering intrusion, the model must
be set such that the underlying baroclinic instability, first in
the form of a convective instability then an absolute instabil-
ity, is not hurt or altered, in order to have the hammer-head
or deep-sock intrusion recovered. The parameters (espe-
cially boundary relaxation, which takes effect jointly with
eddy viscosity), must be chosen to admit convective insta-
bility, not absolute instability, at the western boundary. If
the model setup violates the rule, generally the forecast can-
not be successful, even with extra observational data coming
in. Here the moral is: in an era when we lay too much stress
on numerical modeling and simulation, fundamental geo-
physical fluid dynamics studies are still of great importance.

Appendix A: Boundary Relaxation

[64] In the HOPS, boundary relaxation is a nudging
approach to stabilize the numerical scheme. The following
note is based on some material by Patrick Haley, Jr.
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(maintained together with the HOPS documentation; see
Haley [1995]), and private communications from him.

[65] For a prognostic variable u (velocity or tracer),
boundary relaxation adds a sponge layer to the near-
boundary points. It appears on the right-hand side of the
prognostic equation as a Newtonian damping term

� 1

� s
e�

d
dsð Þ

2

u� u0ð Þ;

where d is the distance to the nearest boundary, � s and ds

the temporal and spatial decay scales, respectively. This
forcing alone gives an exponential decay of u to u0

u ¼ u0 þ Ce�	t;

where

	 ¼ 1

� s
e�

d
dsð Þ

2

and C is a constant.
[66] The temporal scale � s must be set above some criti-

cal value, �c, in order for the integration to be stable. For a
simple system with both nudging and rotation,

du

dt
� fvþ 1

� s
u ¼ 0

dv

dt
þ fuþ 1

� s
v ¼ 0

this �c can be found analytically using the von Neumann
analysis. In general, it is a function of differencing scheme,
implicit Coriolis weighting factor acor, Coriolis parameter
f, and time step Dt. (If acor¼ 0, the Coriolis term is treated
explicitly; If acor¼ 1, a fully implicit scheme is used. The
treatment lies in between when 0 < acor < 1.) Table 6 tab-
ulates four expressions for �c’s with different parameters.
In this study, the model uses acor¼ 0.5, Dt¼ 180s,
f 	 1:318� 10�4, and adopts a leap-frog scheme, yielding
a critical value � s¼ 180 s.

Appendix B: Spurious Structure Resulting From
Data Assimilation in the Presence of Nonuniform
Error Distribution

[67] Data assimilation may lead to spurious field struc-
tures if the error is not homogeneously distributed. We illus-
trate this with a highly coarse-grained model, where the
physical space is represented by only two points, point 1 and
point 2. Suppose there is an observation To and a prediction
T�p for some field T (not necessarily temperature, but any
prognostic variable). (Here the superscript ‘‘�’’ and ‘‘þ’’are
used, respective, to signify a field before and after assimila-
tion.) They are evaluated at locations 1 and 2 as To(1), To(2),
T�p 1ð Þ, T�p 2ð Þ, respectively. Suppose further that

To 1ð Þ ¼ T�p 1ð Þ þ C;
To 2ð Þ ¼ T�p 2ð Þ þ C;

where C is a constant. Then the observed and the predicted
fields share an identical spatial structure, though the abso-
lute values are not equal. For many fields, one anticipates a
correct structure more than the absolute value. Examples in
geophysical fluid dynamics include temperature, salinity,
density, to name but a few. As the observed and predicted
fields have the same structure, ideally we expect the field
after assimilation, denoted as Tþ(1) and Tþ(2), also pre-
serves the structure. However, with the classical OI
scheme, this is not possible in general. We now show why.

[68] By optimal interpolation, when no correlation
between the observation and model prediction is consid-
ered, the assimilated field is

Tþp 1ð Þ ¼
E�1

o 1ð ÞTo 1ð Þ þ E�1
p 1ð ÞT�p 1ð Þ

E�1
o 1ð Þ þ E�1

p 1ð Þ ;

Tþp 2ð Þ ¼
E�1

o 2ð ÞTo 2ð Þ þ E�1
p 2ð ÞT�p 2ð Þ

E�1
o 2ð Þ þ E�1

p 2ð Þ ;

where Eo and Ep are the variance for To and Tp, respec-
tively. The new structure, which is characterized by the dif-
ference between Tþp 2ð Þ and Tþp 1ð Þ, is hence

Tþp 2ð Þ �Tþp 1ð Þ ¼ T�p 2ð Þ � T�p 1ð Þ
h i

þ

þ
E�1

o 2ð ÞTo 2ð Þ þ E�1
p 2ð ÞT�p 2ð Þ

E�1
o 2ð Þ þ E�1

p 2ð Þ �

�
E�1

o 1ð ÞTo 1ð Þ þ E�1
p 1ð ÞT�p 1ð Þ

E�1
o 1ð Þ þ E�1

p 1ð Þ

¼ T�p 2ð Þ � T�p 1ð Þ
h i

þ C 
 1

1þ 
 2ð Þ �
1

1þ 
 1ð Þ


 �
;

where 
 ið Þ ¼ Eo ið Þ
Ep ið Þ is the ratio of the observation error to the

prediction error at point i (i¼ 1,2). Clearly the posterior
difference will not be equal to the priori T�p 2ð Þ � T�p 1ð Þ

h i
,

unless C¼ 0, or 
(2)¼
(1). Unfortunately, neither of these
conditions are generally satisfied in real problems. That is
to say, with the classical OI, assimilation of an observation
with the same structure but not identical in values could
result in something with a completely different pattern just
because of the presence of error nonuniformity.
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